arXiv:1508.03843v1 [cs.DB] 16 Aug 2015

The Gremlin Graph Traversal Machine and Language

Marko A. Rodriguez

Director of Engineering at DataStax, Inc.
Project Committee Member of Apache TinkerPop

marko@datastax.com

Abstract

Gremlin is a graph traversal machine and language desigteed,
veloped, and distributed by the Apache TinkerPop projeceénG

lin, as a graph traversal machine, is composed of threeaictter
ing components: a grapfd, a traversall, and a set of traversers
T. The traversers move about the graph according to the @stru
tions specified in the traversal, where the result of the eadatfpn

is the ultimate locations of all halted traversers. A Gremtia-
chine can be executed over any supporting graph computistg sy

structures naturally facilitate Gremlin being 1.) embetiatea host
programming language, 2.) extended by users wishing ta-leve
age the terminology of their problem domain, 3.) optimizéan
extensible set of compile-time rewrite rules, 4.) executéithin

a multi-machine compute cluster, 5.) evaluated in a depsh-fi
breadth-first, or hybrid ordering, and finally, 6.) repreasernwithin
the graph itself via the theoretical existence of a UniMeBsamlin
Machine.

tem such as an OLTP graph database and/or an OLAP graph pro-2. Graph Traversal Machine

cessor. Gremlin, as a graph traversal language, is a furattian-
guage implemented in the user’s native programming lareyaad
is used to define th& of a Gremlin machine. This article provides
a mathematical description of Gremlin and details its aatimm
and functional properties. These properties enable Gnetmlhat-
urally support imperative and declarative querying, hasgliage
agnosticism, user-defined domain specific languages, anskte
compiler/optimizer, single- and multi-machine executiandels,
hybrid depth- and breadth-first evaluation, as well as thstexce
of a Universal Gremlin Machine and its respective entailtaen

Categoriesand Subject Descriptors G.2 [Discrete Mathematids
Graph Theory

Keywords graph traversal, finite automata, functional languages,
virtual machines

1. Introduction

Gremlin, as a graph traversal machine, is composed of tlmee c
ponents: a graphr (data), a traversal (instructions), and a set of
traversersI” (read/write heads). Conceptually, a collection of tra-
versers inl" move aboutG according to the instructions specified
in ¥. The computation is complete when either 1.) there no longer
exists any traversers ifi or 2.) all existing traversers no longer ref-
erence an instruction i (i.e. they have halted). For the former,
the result set is the empty set. For the latter, the resulissite
multi-set union of th&= locations those halted traversers reference.

2.1 The Graph

Gremlin operates over a multi-relational, attributed rdghG =
(V,E,)), whereV is a set of verticest C (V x V) is a
multi-set of directed binary edges, and: (VU E) x ¥*) —
(U\ (VUE)) is a partial function that maps an element/string
pair to an object in the universal sét (excluding vertices and
edges as allowed property values). Giverevery vertex and edge

A graph is a structure composed of vertices and edges. Graphscan have an arbitrary number of key/value pairs catlexperties

have seen a resurgence in the database community with tiwehgro
of graph database technology [1]. The query language of ghgra
database typically promotes eithergeaph traversalor a graph
pattern matchperspective. In the traversal model, traversers walk
a graph according to particular user provided instructiamg the
result of the traversal is the locations of all halted traees. In
the pattern match model, a subgraph containing variableseis
ated by the user and all graph elements that bind to thosablesi
are returned as the result set. Gremlin supports both theranp
tive traversal-style and the declarative pattern matglesvithin
the same framework. Furthermore, beyond supporting bogh po
ular models of graph querying, Gremlin’s machine and laggua

2015 Proceedings of the ACM Database Programming Lang@geference

For example, vertices may have name, age, latitude prepeatid
edges may have weight, date, permission properties. Thensal
setU contains the set of all property values. These values may be
restricted to longsN), doubles R), strings £*), etc., or subsets
thereof, and thus given the schema of the grdplcan be con-
strained accordingly.

2.2 The Traversal

A traversal¥ is a tree of functions callesteps Steps are arranged
in the following two ways:

1. Linear motif : The traversalf o g o h is a linear chain of three
steps where the output traverserg'are the input traversers of
g. Likewise, the output of is the input ofh.

2. Nested motif The traversalf(g o h) o k contains the nested
traversalg o h which is an argument of the stgp In this way,
f will leverageg o h in its mapping of its input traversers to its
output traversers which are then provided as input to

A stepf € W defined asf : A* — B* maps a set of traversers
located at objects of typd to a set of traversers located at objects
of type B. The Kleene star notatiod™, when used in the context
of an interpretation function, denotes that multiple traees may

http://arxiv.org/abs/1508.03843v1

be at the same element ih However, what is mapped is a unique
set of traversers to a unique set of traversers. It is onlyrthisi-set
union (@) of their locations inG that may contain duplicates.

The Gremlin graph traversal language defines approximately
steps which can be understood asitieruction sebf the Gremlin
traversal machine. These steps are useful in practice tygitbally
only 10 or so of them being applied in the majority of caseshEa
of the provided steps can be understood as being a specifiati
one of the 5 general types enumerated b8low.

1.map : A* — B*, wherejmapT)| = |T|. These functions
map the traverserg at objects of typed to a set of traversers
at objects of type3 without altering the traverser set size.

2. flatMap : A* — B™, where the output traverser set may be
smaller, equal to, or larger than the input traverser set.

3. filter : A* — A*, where filte(T") C T'. The traversers in the
input set are either retained or removed from the output set.

4. sideEffect : A* —, A", where sideEffe¢?”) = T . An

identity function operates on the traversers though son@ da

structurez (typically in GG) is mutated in some way.

5.branch : A* —? B*, where an internal branch function

b: T — P(¥) maps a traverser to any number of the nested

traversals’ start steps.

All the above steps can be represented as a specification o

flatMap() —i.e. map one set of traversers to another setwdisars.
For instance, map() as a flatMap() simply maps each travarser
T (at A) to a single traverser iB. For filter(), flatMap() either
includes the original input set traverser or removes it,iehe =

B. If flatMap() can mutate outside data structures, then $fdeff)

is simulated, where the input traverser 8ds the output traverser
set. Finally, branch() is simulated by ensuring the intetogic

of flatMap() include rules for choosing different mappindsttee
traversers il given their state.

2.3 The Traverser
A traverser unifies the graph and the traversal via a referémc

an object in the graph and a reference to a step in the trdversa

Formally, a traverseris an element in the 6-tuple set
TCUxUx(PE)xU)"xN"xUxN").

The first element of the tuple is the traverser’s locatiorisdraph
G (e.g.v € V, whereV C U)H The second element is the tra-
verser’s step location in the traversél The third element is a
sequence of sets of strings and objects calléabaled path For
example,(((a),z), ((b,c),y), (0, z)) denotes the traverser's path

x ~ y ~» z with respective step labels at each location. The

forth element is the traversefsilk which denotes the number of
equivalent traversers this particular traverser repttsBefhe firth
element is the traverser&ackwhich is a local variable of the tra-
verser. The sixth, and final element, is the traverdeog counter

11f the underlying host language supports lambda functioasd (
LambdaVerificationStrategy is disabled), then it is possible for users
to leverage the common lambda parameterization idiom dftfomal pro-
gramming. For instance, users can fidter{t.loops() < 5}. How-
ever, this is strongly discouraged as the provided lambdanca be sub-
jected to Gremlin’s compiler optimizations. Instead, theeptraversal form
loops () .is(1t(5)) should be used, where is() is a type of filter() step.

2The “graph location” of a traverser is il as opposed to only’ U E

because a traverser can move beyond vertices and edgesebgncéfig
arbitrary objects associated with the graph such as progeys, property
values, and side-effect data structures.

STraverser bulk is useful as an fundamental optimizationug it is not
theoretically required.

which specifies the number of times a traverser has goneghrau
loop sequence. The following functions project the aforetioaed
components of a traverser to their respective values.

1. p: T — U maps a traverser to an objectlin(i.e. its location
in the graph).

2.7 : T — ¥ maps a traverser to a stepun(i.e. its location in
the traversal — program counter).

3.A: T — (P(X*) x U)* maps a traverser to its labeled path
(i.e. its history in the graph).

4. B : T — NT maps atraverser to its bulk.
5.¢:T — U maps a traverser to its sack value.
6..: T — Nt maps atraverser to its loop counter.

Visually, a traverset € T is a “bundle” of local variables (meta-
data) with a projection to a location in the gra@hand a projection
to a location in the traversdl.
teT
Ge—pyp ———— v — V¥
. {A7 /67 §7 L} 1/

3. Graph Traversal Language
Gremlin, as a graph traversal language, f&iractional language

fThe purpose of the language is to enable a human user to easily

define ¥ and thus, program a Gremlin machine. The simplicity
of Gremlin’'s grammar enables it to be embedded in the native
programming language of the uBein this way, for a developer,
there is no discontinuity between their software code arir th
graph analysis code.

In order for a language to host Gremlin, the language needs to
supportfunction compositiorand function typegi.e. functions as
first-class entities or enable it via “function objectsWith method
chaining (a type of function composition), a natural flugmitax is
possible. For instance, the travergaboc is denotech () .b() .c)
in the dot notation-syntax of modern object-oriented paogming
languages. With function arguments, traversal nestingssiple.

For instanceg (b o ¢) o d is denotech (b() .c()) .d().

3.1 A Simple Traversal

The most basic graph traversal is one that moves travetsersgh
the steps off in a sequential ordef(; ~ Wy ~ ... ~ W g|) and
where no step maintains internal, nested traversals. Tamgbe
traversal below is a simple linear traversal that determjiimeplain
language, the age of the oldest person that Marko knowsrtasgu
for the sake of simplicity of discussion, that each vertexha
example graph has a unique name).

g.V() .has("name", "marko") .
out ("knows") .values("age") .max ()

The first term,V; (g.V(Q)), is the definition of a traverser set
bijective toV, whereld, 11((Vy):) = V. The above traversal can
be written in curried functional notation as

max(valuesge(OUtknows(haSame=mark§V;))))-

The starting traverser sé&f; is first processed by hage=marke A
traverser set is returned that only contains a single tsaveat the

4TinkerPop distributes a Gremlin machine implemented ire8aand a
Gremlin language binding in both Java8 and Groovy. With it be-

ing host to numerous programming languages, the wider Tt com-
munity has provided Gremlin language bindings in Scalajuté Ruby,
JavaScript, and more. Conceptually, TinkerPop's Gremkeine is a vir-
tual machine implemented in Java that can be programmedh@iatmer-
ous Java-based programming languages in existence.

vertex named “marko.” The step Qiivs then maps thenarko
vertex traverser (parent) to a traverser set (childrergtitat those
vertices that are outgoinghowsadjacent to thenarkovertex. The
children have a new graph location, traversal step locatod a
path that is the concatenation of their parent’s path anid¢herent
location. An example child traverser, at this point, will thee 6-
tuple
(y, valuesge, ((07), (07 y), 1, 0, 0),

whereA(z,namg = marko and\((z, y),label) = knows. Next,

valuegge maps to a traverser set where each child traverser is

located at the integer value of their current verteagg property.
Finally, max) transforms the traverser's Bt to a single traverser

Depending on the particular branch step, the travensety be sent
down a single branch (e.g. choose()), a subset of the brarfetm
repeat().emit()), or all branches (e.g. union()).

The choose() step is a branch step which provides the common
“iflelse ifl.../else” programming construct.

g.V() .choose(label()).
option("person", out("created").count()).
option("software", in("created").count()).
option(none, label())

In the above traversal, if the traverser incoming to chgosedt a
personvertex, then send the traverser down the branch that com-

at a number representing the maximum number in the previetus s putes the number of projects that that person has createlde If

(i.e. the oldesagevalue).

Vg :0=>V" flatMap
hasame=marko : V* — V* filter
OUlnows : V* = V* fIatMap
valuegge :V* — N* map
max :[N*] - N map

It is important to note that the domain of theep,, is equal to
the range ofstep,—1. Furthermore, the domain of max() [i87*]
and the range i&V. The step max() is “blocking” in that the entire
traverser set is required as input before the single traverss
outputted, wherei(t) € N. The notation[A*] denotes a barrier.

Steps that reduce a traverser set to a single traverser byofvay

some binary operation are callegtlucing barrier steps

traverser is at aoftwarevertex, then send the traverser down the
branch that computes the number of collaborators on thatacd
project. Finally, if the traverser is located at neithgueason nor
softwarevertex, then send the traverser down the branch that yields
the label of the vertex, where th@neoption refers to a branch
that should be taken if no other options are valid (i.e. “Blsk
thenoneoption did not exist, then choose() would act as a filter re-
moving the option-less traverser frdm Note that option() is not a
step, but sstep modulatarStep modulators are “syntactic sugars”
that manipulate the previous step in order to reduce the ity

of the modulated step’s arguments (and respective funcien-
loadings). In this way, choose() takes traversals as argtsrand
thus, maintains internal nested traversals, where thetfagérsal
(label()) plus the option keys (e.g. “person”) form the hofafunc-

In Gremlin, a traverser set can grow and shrink over the @ours tion. The above choose() step is represented in curried ésrm

of the computation. Traverser sets typically shrink due lterf)
steps removing traversers, map()/flatMap() partial fuomgimap-
ping to undefined locations i@ (e.g. Marko may not know any-
one), or reducing barrier steps going from many-tofdeaverser
sets grow due to one-to-many flatMap() steps. Gremlin tssrer
arefurcating automatan that if multiple options are met, then all
options are taken. For instance, if a traverser is at a sirggtex and
the current steg)(¢) maps to many adjacent vertices (e.9.xeuk
and Marko knows many people), then the traverser “splitangs
itself) and each child is placed at each adjacent vertex.orie
modification to the child clones are new locationsgGrnand ¥ as

well as a new labeled pathh which is a one-step extension of the

parent traverser's path.

The language used in the discussion thus far states that a “se
of traversers” is being mapped between each step of thertrave

sal. However, traversers are isolated entities maintgittieir own
metadata/state, where the step functions themselves bas@te.
This type of traverser isolation enables a traversal'suatan or-
der to change at different pointsinas sometimes it is useful to use
depth-first (one traverser at each step) and sometimesthréesd
(sets of traversers at each step). A Gremlin machine impiéame
tion can make use of a dataflow/stream constiuct [9] and sit@ul
breadth-first evaluation at particular points in the tragerstream
via the insertion of aidentity barrier stepwith interpretation func-
tion barrier: [U*] — U*.

3.2 A Branching Traversal
A branch in Gremlin is a split in. Formally,
branch(t) = b(t)(t),
whereb : T — W¥. The branching functiol determines, given

the state of, which internal traversal the traverser should follow.

5 As will be explain later, traverser sets also shrink whentiplel traversers

arrive at the same location @@ and, at which point, these traversers merge

into a single traverser with a respective “bulk” equal toshen of the bulks
of all merged traversers. However, while the set shrinks,séime logical
number of traversers still exists.

counf{outereatedt)) : u(labelt)) = person
choos@pel(t) = ¢ countincreaedt)) : p(labelt)) = software
label(t) : otherwise

Note that the domain and range of chagsg) is
choosepe: V* — (NTUX™)".

As such, any step following choose() must be able to accéptrei
numbers or strings.

It is worth noting that Gremlin supports a more compact synta
for boolean-based “if/else.” If there are only two optiofErson”
andnone then the above traversal would be defined as below.

g.V() .choose(label() .is("person"),
out ("created") .count(),
label())

3.3 A Recursive Traversal

The examples presented thus far have the traversers moaimy f
“left to right” through the sequence of steps W In order to
support recursion (i.e. looping), it is necessary to setrdneerser’s
1-program counter back to some previously seen step. An eeamp
of such a step is the recursive function

: p(t) = true
: otherwise

repeay(t) = {:Peaﬁ(tbﬂ)

wherep : T — Boolis some traverser predicaiét,+1) = ¢(t)+1
(i.e. increment the loop counter), ando) = 0 (i.e. reset the loop
counter).

The following traversal returns the names of the vertices 5
outgoing steps from the vertex named “marko.”

g.V(Q) .has("name", "marko").
repeat (out()) .times(5) .
values ("name")

With times() being a step modulator, the repeat() step istfan-
ally defined as

su(t) <5
: otherwise

repeaf_; (out(t.+1))

repeaf;(t) = { to

Suppose it is necessary to get the names of all the vertices en

countered along the 5 step walk emanating from the vertexedam
“marko” (and not just those names 5 steps away).

g.V(Q) .has("name", "marko").
repeat (out()) .emit () .times(5) .
values ("name")

If the traverser loops, it is also emitted along with its nesbee
mapping. Note that emit(), like times(), is a step modulatbr
repeat(), where

(repeat s emi(OULt.+1)),t0) = e(t) <5

repeaf_; omi(t) = -
Peafs emi(t) {to : otherwise

3.4 A Path Traversal
The third component of the traverses 6-tuple is its labeled path

A(t) € (P(Z*) x U)". Whenever a traverser is mapped to a new

location in G, this location as well as the set of labels for the

respective step i are appended to the child traverser’s path. For

example, assume the following traversal.
g.VO.as("a").out().as("b","c") .path()

In the traversal above, the travergewill start at a particular ver-
tex inz € V. That location is labeled “a” via the step modulator
aq), whereA(t) = (((a),z)). Next, the traverserwill split itself
amongst all the outgoing adjacent verticescofvhere one partic-
ular child traverser’s path would b&(¢") = (((a), z), ((b,¢),y))
assumingz,y) € E. Thus,

path(t) = ta(),

wherep (tae)) = A(t). A single halted traverser’ from the
traversal above would have

u(t") = (((a),), (b, c),))

and

A(") = (((a), 2), ((b,0),y), (0, ((a),), (b, €), 9))))-

That is, the labeled path of , up to that point in the traversal, is an
element in its path.

A traverser’s path history is useful in the following enuated
situations.

1. Itis necessary to determine the (shortest)-path froexerto
vertexy.

2. It is necessary to go back to some previous location of the

traverser.

3. Itis necessary to determine if a particular location Hesady
been visited.

In terms of items 1 and 3,

g.V(x) .repeat (out() .simplePath()).
until(is(y)).path().1limit (1)

will return the shortest, simple (non-looping) path fronmtes x to

vertexy, where until() is a step modulator for repeat() and the filter

t Uicag v (A®)| = 1A0)]
() : otherwise

simplePatlt) = {

3.5 A Projecting Traversal

In the previous subsection, it was stated that sometimesnie¢-
essary to go back to some previous location in the traverpath
history. The following traversal does just that.

g.V(O .as("a") .out ("knows") .as("b").
select("a","b").
by (in("knows") .count()) .
by (out ("knows") .count ())

When the traverser reaches select(), there will be two vertices
labeled “a” and “b” in its path. The select() step generates t
new traversersa, ;) andea,), wherep (ta,) = Aa(t) and
w(ta, @) = Ap(t). Traverseria,) will ultimately determine
the number of incomingnowsadjacent vertices to the “a”-vertex
and traverset, () will determine the number of outgoirignows
adjacent vertices to the “b"-vertex. The®ytep modulator speci-
fies which traversal the “a” and “b” traversers should traeeihe
curried function signature is

selectp: V* — P(X* x NT)*,

where an element i?(X* x NT) is aMap<String,Long> data
structure in programming. The definition of the selgdtinction is

a, count(inknows (£a, (¢ ?
selectp(t) = < ((b, coﬂntgl)l:ﬁmows((?ai()t?)))))) .

The wheré) step is similar to selett save that it filters a
traverser based on its labeled path. The traversal below thae
same selection as above, but only if the traverser's “a” anid “
vertices are not maternal siblings. Thus,

‘\Whergyb(t) = {é) Z?ﬁé?wfslgmother(Outnother(tAa(t)))

in the traversal

g.V(O .as("a") .out ("knows") .as("b").
where (not (
as("a") .out("mother") .in("mother") .as("b"))).
select("a","b").
by (in("knows") .count ()) .
by (out ("knows") . count ())

The above syntax ofs("a")...as("b") is syntactic sugar for
select("a")...where(eq("b")).

3.6 A Centrality Traversal

A graph is a complex structure that is difficult to reason abou
its n-dimensional form. In order to extract meaningful inforioat
from graphs, numerous statistics have been developed idahe
mains of graph theory and network science [2]. Every graatisst
tic maps am-dimensional graph to some lower dimensional space.
Typically, the reduction is either to a 0- or 1-dimensior@dee. For
instance, size: G — N7 is a 0-dimensional statistic that maps a
graph to the number of vertices it contai@aph centralityis a 1-
dimensional graph statistic generally definedsass RV'!, where
the function maps a grapfi’ to a vector of centrality scores for
each vertex ir/. Centrality measures identify “important,” “rep-
resentative,” “connective,” “influential,” etc. verticés the graph.
In eigenvector centralitycentrality is formally defined as the prob-
ability that a vertex will be host to some random walker at om
random point in time. This description can be representethby
linear algebraic equatiodv = Av, where
{1 :(i,j) € E
Ay = .
0 : otherwise

is the adjacency matrix of the grapgh and v is the eigenvector
whose components change, with each iteration, accordirigeto
scalar) (the eigenvalud].If the graph is strongly connected and
aperiodic [6], then the larger a vertex’s valuevinthe more central
it is in the graph. The equatioAv = A\v is expressed and solved
in Gremlin via the traversal

g.V() .repeat (groupCount ("m") .out()) .
times(30).cap("m"

The groupCount() side-effect step is defined as
groupCount,(t) =m t : m[u(t)] = m[u(t)] + B(t).

Every time a traverser arrives at groupCount(“m”), its @groca-
tion is indexed into the map € P(V x N*1), wherem ~ v
andm is aMap<Vertex,Long>. The keys ofm are the vertices

in V and the values are the number of times each vertex has been

encountered thus far. Thirty iterations is provided as ae/éihat is
typically large enough to ensure convergence in naturgtgralt
is possible for repeat()’s times() to be replaced with arl{rthat
calculates whether the map’s values have reached a stea€ylis-
tribution. This requires comparing the unit vectoe= H_XII at itera-
tion n with v at iterationn + 1. However, for the sake of simplicity,
this computation is left to the reader to deduce.

The step cap(“m”) is aupplying barrier stepn that is takes
takes all the incoming traversers and emits a single travénat is
not a function of the incoming set, but a function of a sideetf
data structure. In this case, a single traverser emitted where

wu(t) =m.
cap,: [V*] = P(V x N*).

3.7 A Mutating Traversal

All of the examples presented thus far have only read from the
graph. None have written to it. Gremlin provides a collectaf
graph mutation steps that can be used to add and removeegertic
edges, and properties. A few of these are outlined below.

addOute : V* — E* sideEffect/map
addinE :V* — E* sideEffect/map
addv :U* -V~ sideEffect/map
property : (VUE)" — (VUE)" sideEffect
drop :[(VUE)"]—0 sideEffect/map

traversal and thus, uses the same Gremlin traversal machime
structs presented thus far.

The match() step’s argument is a setti@versal patternghat
may be not()'d or nested via and() and or(). When a traversers
match(), it will propagate through each pattern. A travetbat
continues on to the step after match() is guaranteed to revés
labeled path values bind (via equality) to all the prefix andtfix
variables of the match() traversal patterns.

g.V() .match(
as("a").out("created") .as("b"),
as("b").in("created") .count() .is(gt(3)),
as("b").in("created") .as("c"),
as("a").out("father").as("c")).
dedup("a").
select("a") .by("name")

The traversal above will return the name of all vertices wisated
a piece of software in collaboration with at least 4 peopléhhe
caveat that one of those collaborators is their father.

matcht) =
match(binds (OUtereated t A, (1)A A))) FAG(t) # 0= Ama(t)
match(is> s (couni(iNcreatedt A, (1)ranm,)))) : Ab(t) # 0 = Ama(t)
matcr(bindc(increalE((tAb(t)/\Am3))) : Ab(t) 7’é 0= Am3(t)
match(bind:(oUtather(A, (t) 72 m))) tAa(t) # 0= Apal(t)
t : otherwise
where
tas =) Da(t) =10
bind(t) = ¢ ¢ s AL (t) = pl(t)
0 : otherwise

The matcli) step is a recursively defined branch step, where each
pattern/branch is taken once and only once. This is guadriig

the hidden path label “m#” which is appended to the travérser
labeled path upon entering a branch pattern. Moreover, riiexp
label z of a pattern must exist in the traverser’s path prior to the
traverser taking that particular branch (iZe, (t) can not equald).

The two traversals below mutate the graph. The first one adds Upon completing a pattern, if the traverser already has tstfig

an inversecreatedByedge for everycreatededge. The second re-
moves the originatreatededges.

g-V() .as("a") .out("created").
addOutE("createdBy","a"

g.V(Q) .outE("created") .drop()

3.8 A Declarative Traversal

Gremlin supports graph pattern matching analogous, in meany
spects, to SPARQL._[11]. The primary benefit of Gremlin’s patt
matching is that it encompasses only a single step withiGiiesn-
linlanguage and thus, itis possible to move from declaggiattern
matching, to imperative traversals, and back all within shene
traversal definition. Moreover, pattern matching is expeésas a

6The method of multiplying the vectar (initially being settol V1) against
the adjacency matrixd until A reaches a fixed point is called tip@wer
iteration method The resultanty (when A converges) is guaranteed to be
the primary eigenvector with being the largest eigenvalua.defines the
growth rate ofv over any subsequent iterations. In Apache TinkerPop’s
Gremlin implementation, the growth rate plays an important role in
understanding when the “bull@ of a traverser will overflow its 64-bit long
representation.

label in A(¢t) then that historic location must equal its current
location () otherwise the traverser is deemed a non-match and
is filtered out. However, if the postfix label does not existN(t),

then it is added to the path of the traverser and thus, th&hblar

is bound for all subsequent patterns. A traverser is ablexito e
the match() step when every pattern has been taken. Witkin th
labeled path of a surviving traverser lies the match-véemland
their respective bindings (A, (t), Ay(t), Ac(t)).

The order in which match-patterns are executed is up to the
match() step implementation. The only caveat is that the two
pattern selection criteria are respected — 1.) the pattasnot
been taken before and 2.) the prefix variable of the pattern al
ready exists in the labeled path of the traverser. TinkesPop
Gremlin implementation provides twmatch algorithmscalled
GreedyMatchAlgorithm and CountMatchAlgorithm [3]. The
former simply finds the first pattern in the user provided it
meets the respective constraints and executes that paftezrat-
ter maintains, for each pattern, a dynammaltiplicity variable that
is equal to the number of traversers outputted by the pattern
vided by the number of traversers inputted to the patterthdi
continually re-sorts the patterns favoring those that thgdowest
multiplicity (i.e. it favors patterns that yield the largeset reduc-
tions).

3.9 A Domain Specific Traversal

The Gremlin traversal machine supports approximately 8ssin
its instruction set. These steps are deemed the most usefuabist
any traversal algorithm. The Gremlin traversal languadaésrly)
in one-to-one correspondence with these steps. This aéighia

5. Verification: Analyze the traversal and ensure it is valid given
some set of constraints.

The itemization below presents a subset of Gremlin’s prexyid
traversal strategies and demonstrates a few rewrite rampbes
for eacH] The rewrite rules are represented such that when the left-

due to the fact that the Gremlin language is a “graph specific hand pattern is matched, it is rewritten as the right-hartépa

language” that forces the user to process their data frorgreiqeh-
perspective of vertices (out(), inV()), edges (outE())J anoperties
(values()).

Typically, in practice, a graph structure represents samiel@m-
domain that is best modeled as a graph. In these domainsptthe ¢

cept of vertices and edges may be understood as people aatl soc

relationships, for example. It is trivial for a user to defimelo-

main specific languagthat, when compiled, generates a traversal
in terms of the~30 Gremlin steps. For instance, given the example

graph used throughout this section, a hypothetical “sd@aktrsal

language” may allow the following domain specific query to be

expressed.

g.people() .named("marko") .
who () .know(well) .people() .
who () .created("software") .
are() .named ()

Each one of these steps would be the composite or 1 or more

Gremlin steps.

g.people() — g.V(Q .hasLabel("person")
named ("marko") +— has("name","marko")

who () — identity()

know (well) — outE("knows").

has("weight",gt(0.75)).
inV()
out ("created").

hasLabel ("software")
identity()
values ("name")

created("software") —

are() —
named () —

While the user expresses queries in the language of theiaidom
Gremlin ultimately evaluates those queries in terms of tidedy-
ing graph structure used to represent that domain.

4. Traversal Strategies
A traverser executes the step functions defined .irsometimes a

particular step sequenceincan be expressed in another way that

is perhaps more efficient to execute. Greniliaversal strategies
define translations which rewrite sections of a traversith(typ-
ically, though not necessarily, the same semantics as igmalr
traversal)|[16]. There are 5 traversal strategy categohigisform
a total order, where a category’s strategies are evaluatedtp
moving to the next category and prior to traversal executian-
thermore, within a category, strategies form a partial owdeere
some strategies may require the execution of another gyréie-
fore (or after) its execution.

e ConjunctionStrategy (Decoration): Gremlin supports prefix
and infix notation for logical connectors. When infix notatio
is used, it is converted into the respective prefix-basederep
sentation.

a.and().b +— and(a,b)
.or().b — or(a,b)
+— or(a,and(b,c))

a
a.or().b.and().c
a

.and() .b.or().c +— or(and(a,b),c)

¢ IncidentToAdjacentStrategy (Optimization): If a traversal
touches the incident edges of a vertex on its way to its adja-
cent vertices, and executes no step that requires the énafys
those incident edges, then simply jump to the adjacentoesrti
without manifesting the respective incident edges.

a.out().b
a.both().b

a.outE(Q) .inV() .b —
a.bothE() .otherV().b

AdjacentTolncidentStrategy (Optimization): If a traversal
only checks for the existence of adjacent vertices, it is-typ
cally cheaper to only manifest the incident edges.

a.inE(Q) .count().b
a.where(outE()) .b
a.and(inE() ,outEQ)).b

a.in().count().b —
a.where(out()).b —
a.and(in(),out()).b

IdentityRemovalStrategy (Optimization): If a traversal main-
tains an identity() step, remove the identity() step and oty
as() modulators into the previous step.

a.identity().b +— a.b

FilterRankingStrategy (Optimization): All filter() steps either
remove or retain traversersin Thus, if there is a sequence of
filter() steps, reorder them such that cheaper filters areutsd
firstin the hopes of yielding large set reductions prior te@x-
ing more costly filters. Note that order() is considered a€fil
even though it only sort§” without ever removing traversers
fromT.

a.and(c,d) .has().b —
a.order() .dedup().b

a.has().and(c,d).b
a.dedup() .order() .b

RangeBylsCountStrategy(Optimization): If a traversal only
needs to determine if a particular number of elements exist,
then instead of counting the full set, limit the count to 1splu
the required number.

a.count().is(0) +— a.limit(1).count().is(0)

1. Decoration: Rewrite a traversal given that certain steps serve It is easy for vendors and users to register new traversatiegfies with

only as syntactic placeholders.

2. Optimization: Rewrite a traversal given that a particular step

sequence can be expressed in a more efficient form.
3. Vendor Optimization : Rewrite a traversal give that a particular

TinkerPop’s Gremlin compiler. This is typically done by dems as their
graph system may maintain different optimizations actéssinly through

their custom interfaces. In such situations, vendors wiltexcustom steps
and traversal strategies that replace particular Grertdip Sequences with
their vendor-specific steps.

step sequence can be expressed in a more efficient form givengThiS is especially true in distributed Gremlin where a veiite a vertex

the underlying graph system.

partition maintains direct references to only its progestiincident edges
and their properties. WithoutdjacentToIncidentStrategy, the left-

4. Finalization: Make any final adjustments to the traversal given handed patterns would waste network bandwidth as traeemeuld be

the “final” compiled form.

sent to adjacent vertices only to be counted/etc.

e XGraphStepStrategy (Vendor Optimization): Graph database
vendors typically maintain indices over the properties haf t

Viw Ve V3 = V denote three vertex partitions &f, where
each partition is composed of a unique set of vertice¥ aind

vertices (and sometimes edges) of the graph. In order avoid their respective incident edgegi(N V> N Vs = (). When traverser

O(|V]) linear costs, fold all has() steps into a vendor spe-
cific V() step in order to facilitate) (log(|V'|)) indexed-based
lookups.

V.has() .has().b +~ V[has,has].b

MatchPredicateStrategy (Optimization): If match() is fol-
lowed by a where() step, fold that where() step into match()
as a new branch pattern. In this way, the where()-basedrpatte
is subject to the match() steX#latchAlgorithm runtime op-
timizer. Furthermore, if match() maintains a has()-basstepn
whose prefix variable is the input variable, then pull that pa
tern out of match() such that it may be used by the vendor for
respective index lookups (se&raphStepStrategy).

a.match(c,d) .where(e).b —
a.match(has(),c,d).b —

a.match(c,d,e)
a.has() .match(c,d).b

ProfileStrategy (Finalization): If the user wants to get met-
rics about a traversal’s performance, then a terminal (fil
step serves as a place holder for later inserting profilef)sst
between each step in the traversal. Profiling metrics ar@-mai
tained in a side-effect data structure.

a.b.profile() + a.profile().b.profile()

Computer\VerificationStrategy (Verification): Single-machine
Gremlin (OLTP) is more flexible in the types of traversalsahc
execute. When a traversal is executed within a multi-machin

t is located atu(t) € Vi, the traverser will exist at machine
1. Suppose the step(t) is applied and the following traverser’s
are generatedt’,t”,t"") where,u(t') € Vs, u(t") € Vs, and
w(t"") € Vh. Traversers’ and¢” will be serialized and sent over
the network to machines 2 and 3, respectively, for furthecaon.
However, traverset”’ will remain at machine 1 to execute its
referenced step(¢"'). In this model of distributed graph traversal,
it is advantageous to create a partition16fthat reduces costly
inter-machine communication.

The Gremlin graph computer machine executes in a breadth-
first manner as each traverser at every vertex is operated par-
allel. As graphs become large, the number of traversers aan e
ily grow exponentially, especially in repeated one-to-gnamap-
pings. For example, in a 20x20 lattice with vertices havimdyo
one “right” and one “down” edge, the traversal

g.V(topLeft) .repeat (out()) .times (40)

will ultimately yield ~138 billion traversers at the lattice’s “bottom
right” vertex. The general equation for the number of traees for
any nxn lattice is (*") = 2. While the number of traversers
can grow exponentially, the number of traverser locatisraways
bounded by the size @f, where for this particular lattice traversal,
the upper bound i$V/| = 400. Gremlinbulking takes advantage
of this traverser-to-location relation by projecting thpetentially
exponentially growing) traverser set to a traverser sestraimed
to an upper limifU|. As a result of thisossless compressipim the

compute cluster (OLAP), certain traversal sequences are no 20x20 lattice example, the resultant traverser set casitaity one
allowed. Over time, as advances are made to the distributed traversert whose bulk is8(t) = 137, 846, 528, 820. Traversers in

Gremlin machine, respective verifications will be removed a
cordingly.

a.order.b —
a.local(out().out()).b +—

error
error

5. Distributed Graph Traversals

Gremlin’sgraph computetraversal machine was designed to sup-
port the distributed execution of a Gremlin traversal via Hulk
synchronous parallel (BSP) model of distributed compufitfgj.
In graph-based BSP, each vertex is a logical processorabeaives
messages (typically via adjacent neighbors), updatetaits given
its current state and its received messages, and send ree$s4m-
cally to adjacent neighbors) [10]. This process continugs there
are no more messages being sent. The result of the compuistio
distributed across the state of all the vertices (escaeproperty
on each vertex). In Gremlin, the vertices receive traverasmes-
sages, execute the traverser’s traversal step identified bpd for
each traverser generated, sends a message to the respective
tex referenced by the traverseyi§l For those traversers that have
halted, the vertex saves the halted traversers in a “hiddertéx
property value. This process continues until there are nertra-
versers being sent around the cluster. The aggregate afdatdns
of all halted traversers across all vertices in the graphésrésult
of the computation.

When a graph is partitioned across a cluster, traversensataig
between the machines as dictated by theit)[™ For instance,

91f the traverser references an edge, then the message iwgbptvertex
maintaining that edge. If the traverser references somer athject inU,
then the traverser remains at the current vertex location.

101t js not required that the Gremlin graph computer machinerate over

multiple physical machines. The only requirement is that timderlying
graph system provide a logical partition of the verticed/irand that each

T are “bulked” according to their respective equivalence<la

[={t'eT | ut) = wut) A
By = () A
Al = A{) A
o) = <ot) A
) = oty)

In other words, all components of the traverser’'s 6-tuplestmu
be equal amongst all traversers [ifh except for their respective
bulklt] The traversers irjt] are reduced to a single traversér,
wheres(t") = ;8 ([t};) and|[t"]| = 1. Instead of enumerating
each traverser, each traverser is counted (with only onversar
existing in T for each equivalence class). Bulking ensures that
breadth-first Gremlin on large graphs (OLAP) does not regair
exponential amount of memory. Furthermore, this optinirais
leveraged in depth-first Gremlin (OLTP) via the barrier@pstand
LazyBarrierStrategy), where

barrier: [U*] — U~
and

barrie(T) = | taw=x, s
v[tleT

vertex in each partition has direct (non-remote) refergrigets properties,
incident edges, and incident edge properties.

11 Many traversals do not require the labeled path (or a fultliedh path) of a
traverser and as such, in practice, when the labeled patt isquired, then
A(t) = 0. This helps to ensure a smaller number of equivalence dasse
in T and thus, a greater likelihood of bulking. Note that whereled
paths are considered, typically, the number of equivaleriasses grows
proportionate to the number of unique paths inG which tends to grow
exponentially in broad, non-filtering traversals.

6. Minimal Gremlin Traversal Machines

Gremlin, as a graph traversal machine, is an automaton.matto
are studied in computer science to understand the minimad-st
tural and behavioral requirements necessary for somerasha-
chine” to perform a particular type of computation if it wecebe
physically built or modeled in another machine powerful ggtoto
simulate its behavior [8]. In automata theory, computatiare rep-
resented as problems in language transduction. Every dayegis
composed of an alphabet of charactergirstrings in the language
are inX*. If an input string is “1 + 2" and an automaton produces
“3,” then the automaton has the requisite computing powgete
form addition (assuming it generalizes to any+ y").

As it stands, th&uring machineés the minimal abstract machine
required for general-purpose computing. A Turning macltiae
do any known “mechanical” (algorithmic) computation. Riesed
forms of a Turning machine are able to solve simpler probldtos
instance, a finite-state automaton can be programmed t@gsoc
regular languages and answer regular expressions. Fopéxaire
finite-state automaton programmedd&® mapsb, ab, aab, aaab,
etc. totrue.

The types of languages that particular minimal Gremlin ma-

chines can process are provided in the table below, where eac

minimal Gremlin machine is a reduction of the elements inttae
verser’s 6-tuple structure and/or a reduction in the setoskible
steps that can be used to progréFor Gremlin to simulate a Tur-
ing machine (as well as any less powerful automata), itsingon
set must at minimum support values(), property(), sackQpse(),
repeat(), in(), and out().

Automaton | Minimal Gremlin Machine Language
FiniteState | (U, x ¥\ propertyJin x U;) | Regular
Pushdown | (U, x ¥\ in x U,) ContextFree
Turing (U x U x Uy) Recursive

6.1 Turing Completeness

This subsection defines a surjective function whose imagaeof
full Gremlin traversal machine is isomorphic to a singlexthed
Turing machine. The aforementioned components of Grennén a
mapped to the components of a 5-tuple Turing machine

M:(Q7F7F7275)7

where(@ is the set of machine stateB, C Q is the set of legal
halt states" is the readable/writable alphabét, C T is the
initial input on an infinite one-dimensional tape of cellada :
(Q\F)xT) —» (Q xT"x {L, R}) is the transition function
which updates the machine’s state, determines which symabol
write to the current tape cell, and whether it should then lg&™
or “right” on the tape.

LIt
+
M[3)

A machine is deemed Turing Complete if it can simulate theeafo
mentioned single-headed Turing machine. If so, that macbham
be programmed to execute any known algorithm [18].

Theorem. The Gremlin graph traversal machine is Turing Com-
plete.

Proof. For the Gremlin traversal machine, the tape is the (infinite)
graphG, where each vertex € V' has one incoming neighbor, one
outgoing neighbor, aymbolproperty value inl" and initially, the
symbolsY are thesymbolproperty values of a consecutive chain
of vertices. In other words(Z is a line graph with each vertex
representing a cell in the Turing tape with respective irgyatbols.

The Turing machine state is the traverser's sg¢k € Q. Assume
the existence of only the following Gremlin steps:

valuesympor :V — T map read tape
property poer V. =V sideEffect write tape
sack : V = Q map read state
sackecg V-V sideEffect write state
choose : V -V branch if/else
repeat : V —V branch loop
in V-V map move left
out : V-V map move right

The § function of the Turing machine is the composition of the
steps above to create. Note that the steps above map to traverser
sets of size 1 as no step is a true flatMap() nor filter(). Givext t
there is only one “left” and one “right” adjacent neighbogateertex

in the line graph, the above steps will never increase (nomredese)
the size of the traverser set. In this way, any single-heJdeithg
machine can be simulated. |

As an example, a 3-state “busy beaver” Turing machine is de-
fined, wherel' = {0,1}, @ = {A,B,C,HALT}, and/ is the
Gremlin traversal below.

g.V(1).
sack("A").
repeat (choose(values("symbol")).
option("0", choose(sack()).

option("A",
property("symbol","1") .out().sack("B")).
option("B",
property("symbol","1") .in() .sack("A")).
option("C",

property("symbol","1") .in() .sack("B"))).
option("1", choose(sack()).

option("A",

property("symbol","1") .in() .sack("C")).

option("B",

property("symbol","1") .out().sack("B")).

option("C",

property("symbol","1").out () .sack("HALT")))).
until (sack() .is ("HALT"))

6.2 A Universal Gremlin Machine

A Universal Gremlin Machine (UGM) is a Gremlin machine that
can simulate another Gremlin machine within @& ¥ and T’
constructs|[14, 15]. The encoding to follow will represeiottb
¥ andT in G [12,17]. Any step in¥ can be represented as
a vertexv € V, where\(v,label) = step and\(v,op) is the
operation of that step (e.g. out). if € V is another step in
¥ that follows v then there exists an edde,u) € FE, where
(v, u), label) = nextStefft] A traverser inI” can be represented
by a vertext € V where,\(¢, label) = traverser and each element
of the traverser’s 6-tuple is a subgraphin

1. p(t) is the edgdt, z) € E, whereX((¢, z), label) = mu.

2.4(t) is the edg€(t,y) € E, where\((t,y),label) = psi and
A(y, label) = step.

3. A(t) is a collection of edges to vertices that join step labels (as
vertex properties) with graph locations@h

4. (t) is the traverser vertex’s bulk properyyt, bulk) = 5(t).
5. ¢(t) is the traverser vertex’s sack propeht, sack = ¢(¢).

12Fyrther complications exist for nested traversals. Howefee the sake
of brevity, the general representation of such travergalsedt to the reader
to contemplate.

6. .(t) isthe traverser vertex’s loop counter propexty, loops) =

u(t).

The aforementioned mapping represents bdtland T' as sub-
graphs ofG such that, in total contains the complete represen-
tation of the structure (graph) and the process (traversaltiaa-
versers) of the computation. However, representationti@xecu-
tion. In order for this graph structure to evolve (and thasnpute),
there must exist a Universal Gremlin Machine traverser asgdec-
tive traversal that moves betweén\ (¥ UT') and the traversal

¥ C G updating the respective edges and properties of the tra-

versersI’ C G. The G-encoded traversal and traversers form a
virtual machinein the Universal Gremlin Machine. A snippet of

U123 can be unambiguously gathered via

Vi w(Vi) X (V;,label) = traverser A
iy i =1
resultyi2s = L—ﬂ)\A(‘(/szlslf;): 0 2N
"o : otherwise

Finally, nothing prevents multiple Universal Gremlin Maus op-
erating in parallel agains¥ locating active traversers and execut-
ing a step until no more traversers exist or all traverseve halted.
This is, in fact, analogous to a multi-threaded system.

6.4 Traversing a Gremlin Traversal Machine

the Wyem is presented below where all supported steps would need When the graphtZ, the traversail, and the traverser s@t are all

to be represented in aption(...).

g.V(Q) .hasLabel("traverser") .as("t").
repeat (
choose(out ("psi") .values("op")).
option("out",
outE("mu") .as("drop") .inV() .out ().
addInE("mu","t"))
option("in",
outE("mu") .as("drop") .inV() .in().
addInE("mu","t"))
option(...)
option(...)
sideEffect (select("drop") .drop()).
select("t").
outE("psi").as("drop").inV().
out ("nextStep") .addInE("psi","t").
sideEffect (select("drop") .drop()).
select("t")).
until (out ("psi") .count().is(0))

The Wyewm traversal loops over its repeat() traversal until ¢he
encoded traverser halts by no longer referencing a stepxérhe
result of the computation is the multi-set union of the symtmm
the “tape”-subgrapld \ (¥ U T'). Formally,

V]
result= H—J

7

A (Vi,symbo) : X (V;,label) ¢ {traverserstep
0 : otherwise
In order to provide a Universal Gremlin Machine that can eper

ate onG-encoded Gremlin machines that maintain the same level
of expressivity as the Gremlin traversal machine discugsdkis
article, it would be necessary to extend the ab®vewm traversal to
account for the growing and shrinking 6Fencoded traverser sets
as well as all the steps of Gremlin’s instruction set.

6.3 Parallel Universal andG-Encoded Machines

It has been assumed, up to this point, that the traversefsat
reference steps of the sanie However, nothing prevents multi-
ple traverser sets to exist, where each set operates undtarart
traversal. In fact, regardless 6fencoded machines, this is neces-
sary for allowing parallel, concurrent traversals/quenéG. With
respect toG-encoded machines, the Universal Gremlin Machine
need not concern itself with which traverser of which traegit is
executing. In fact, the Universal Gremlin Machine simplgds to
find any traverser that has yet to halt and execute its nept $tee
Universal Gremlin Machine acts astlaread evolving the state of
different traversals/programs. However, in order to getefl de-
fined result set for each traversalPaunique identifier would need
to be appended to each traverser so that the result of soveesah

encoded in, then all the components of a Gremlin traversal ma-
chine exist in the same address space — nafiel§k consequence
of this co-location is that a traverser can, in principlayvérser its
own structure. Similarly, a traverser can traverse itsarsal. When

a machine has direct reference to its representation, aingacan
not only analyze itself viaeflection but it can also rewrite itself.
The ramifications of this consequence, with respects toiegpl
graph computing, are left to future ruminations.

6.5 A Primordial Graph Traversal Machine

This section describes, at a high-level, a vision of grapmma-

ing that is, in many ways, analogous to the token rewrite hode
of the lambda calculus [4]. A lossless, injective functiakes a
multi-relational, attributed digrapiMADG) to a multi-relational,
unattributed digraphMDG), where edges are reified structures and
all properties are “property key’-labeled edges incidentprop-
erty value” vertices||7]. Next, there exists an injectivandtion
that maps a multi-relational digraph to an unlabeled digr@G),
where labels are encoded as “binary vertex chaing” [13]alBin
another injective function has been defined that maps apligi@a

an undirected graphJG), where edge directions are represented
as topological features of the undirected form [13].

MADG +— MDG — DG — UG

Given the existence of this mapping, the complete state wf-co
puting (i.e.G, ¥, andT) can be represented by a single undi-
rected graph whose structure is solely the composition otfs‘d
and lines” in somer-dimensional space. In this primitive, verbose
graph, there are no labels, strings, numbers, etc., singib/abn-
nected to each other by lines. Computing occurs when subgrap
of a particular shape (e.g. a traverser at a location in thehr
morph to form new subgraphs of a particular shape (e.g. rew tr
versers with new graph locations). Computing, in this mancen

be conceptualized as a chemical reaction where “molectriae-s
tures” (undirected subgraphs) interact with adjacentctiires to
yield new structures that may elicit yet more reactions [[5this
primordial world, the computation is complete when vesiead
edges are no longer being created nor destroyed. When tlie und
rected graph reaches an equilibrium with its “laws of physithe
problem is solved — for it has reached a stable state.

7. Conclusion

Gremlin is a graph traversal machine and language. The Greml
machine specification is simple to describe and ultimatelylé-
ment. The complexity of the computations that Gremlin eesiid
not necessarily due to its constructs, but due to the dasehsdtg
processed. Graphs are multi-dimensional structures abi@tel a
heterogenous set of “things” related to each other in a bgégrous
set of ways — all within a single, connected data structurkel\a
Gremlin traversal is evaluated against a graph, billionsnupil-
lions of traversers can be generated on even small graptts the

exponential growth of the number of paths that exist withhestep
the traversers take. With so many forks in the road, traveisan-
tinually split themselves in order to explore each opticat theets
the constraints of the traversal they obey. When thesersarseul-
timately halt, they provide an answer to the question speetifiy
their traversal, which was programmed by a user via the Gneml
traversal language.

Acknowledgments

The Apache TinkerPop projechftp://tinkerpop.com) was
started in November 2009 and is currently in its third getiena
of development with TinkerPop3 having been released in dfily
2015. Many individuals have contributed to the project andew
ecosystem over the years and their contributions, bottrétieal
and applied, have been invaluable to the generation of thasid
presented in this article.

References

[1] R. Angles and C. Gutierrez. Survey of graph database feoéd&M
Computer Survey#0:1-39, February 2008. ISSN 0360-0300. .

[2] U. Brandes and T. Erlebach, editoiéetwork Analysis: Methodolgical
Foundations Springer, Berling, DE, 2005.

[3] M. Brocheler, A. Pugliese, and V. S. Subrahmanian. A daid
based algorithm for efficient subgraph matching on huge net-
works. In Workshops Proceedings of the 27th International Con-
ference on Data Engineeringpages 94-99, 2011. URL
http://dx.doi.org/10.1109/ICDEW.2011.5767618.

[4] A. Church. An unsolvable problem of elementary numbegotty.
American Journal of Mathematic§8(2):345—-363, April 1936.

[5] P. Dittrich and P. di Fenizio. Chemical organisationdhe Bulletin
of Mathematical Biology69(4):1199-1231, 2007. ISSN 0092-8240.
. URLhttp://dx.doi.org/10.1007/s11538-006-9130-8.

[6] O. Haggstrom.Finite Markov Chains and Algorithmic Applications
Cambridge University Press, 2002.

[7] O. Hartig. Reconciliation of RDF* and property graphs.
Technical report, University of Waterloo, 2014. URL
http://arxiv.org/abs/1409.3288.

[8] J. Hopcroft and J. Ullman.Introduction to Automata Theory, Lan-
guages and Computatiomddison-Wesley, 1979.

[9] E. Lee and T. Parks. Dataflow process networRsoceedings of the
IEEE, 83(5):773-801, May 1995. ISSN 0018-9219. .

[10] R. R. McCune, T. Weninger, and G. Madey. Thinking likeeatex: a
survey of vertex-centric frameworks for large-scale disted graph
processingACM Computing Survey2015.

[11] E. Prud’hommeaux and A. Seaborne. SPARQL query langdag
RDF. Technical report, World Wide Web Consortium, Octobed4£

URL http://www.w3.org/TR/rdf-sparql-query/.

[12] M. A. Rodriguez. Grammar-based random walkers in seitanet-
works. Knowledge-Based Systen®l(7):727-739, 2008. URL

http://arxiv.org/abs/0803.4355|

M. A. Rodriguez.
rected networks.
ics and Computer Scienceb(1):39-42, February 2008.
http://arxiv.org/abs/0804.0277.

[13] Mapping semantic networks to undi-
International Journal of Applied Mathemat-

URL

[14] M. A. Rodriguez. Emergent Web Intelligence: Advanced Seman-
tic Technologieschapter General-Purpose Computing on a Semantic
Network Substrate, pages 57-104. Advanced Informatiorkayouvl-
edge Processing. Springer-Verlag, June 2010. ISBN 7899@4076-

2. URLhttp://arxiv.org/abs/0704.3395.

M. A. Rodriguez. The RDF virtual machine. Knowledge-
Based Systems 24(6):890-903, August 2011. URL
http://arxiv.org/abs/0802.3492,

M. A. Rodriguez and J. Shinavier.
relational networks to single-relational
rithms. Journal of Informetrics 4(1):29-41, 2009.
http://arxiv.org/abs/0806.2274,

[15]

[16] Exposing multi-
network analysalgo-

URL

[17] J. Shinavier. Functional programs as Linked Data3riah Workshop
on Scripting for the Semantic Webnsbruck, Austria, 2007.

[18] A. M. Turing. On computable numbers, with an applicatio the
entscheidungsproblenProceedings of the London Mathematical So-
ciety, 42(2):230-265, 1937.

[19] L. G. Valiant. A bridging model for parallel computatio Communi-
cations of the ACM33(8):103-111, August 1990.

http://dx.doi.org/10.1109/ICDEW.2011.5767618
http://dx.doi.org/10.1007/s11538-006-9130-8
http://arxiv.org/abs/1409.3288
http://www.w3.org/TR/rdf-sparql-query/
http://arxiv.org/abs/0803.4355
http://arxiv.org/abs/0804.0277
http://arxiv.org/abs/0704.3395
http://arxiv.org/abs/0802.3492
http://arxiv.org/abs/0806.2274

	1 Introduction
	2 Graph Traversal Machine
	2.1 The Graph
	2.2 The Traversal
	2.3 The Traverser

	3 Graph Traversal Language
	3.1 A Simple Traversal
	3.2 A Branching Traversal
	3.3 A Recursive Traversal
	3.4 A Path Traversal
	3.5 A Projecting Traversal
	3.6 A Centrality Traversal
	3.7 A Mutating Traversal
	3.8 A Declarative Traversal
	3.9 A Domain Specific Traversal

	4 Traversal Strategies
	5 Distributed Graph Traversals
	6 Minimal Gremlin Traversal Machines
	6.1 Turing Completeness
	6.2 A Universal Gremlin Machine
	6.3 Parallel Universal and G-Encoded Machines
	6.4 Traversing a Gremlin Traversal Machine
	6.5 A Primordial Graph Traversal Machine

	7 Conclusion

