
ar
X

iv
:1

50
8.

03
84

3v
1

 [c
s.

D
B

]
16

 A
ug

 2
01

5

The Gremlin Graph Traversal Machine and Language

Marko A. Rodriguez
Director of Engineering at DataStax, Inc.

Project Committee Member of Apache TinkerPop
marko@datastax.com

Abstract
Gremlin is a graph traversal machine and language designed,de-
veloped, and distributed by the Apache TinkerPop project. Grem-
lin, as a graph traversal machine, is composed of three interact-
ing components: a graphG, a traversalΨ, and a set of traversers
T . The traversers move about the graph according to the instruc-
tions specified in the traversal, where the result of the computation
is the ultimate locations of all halted traversers. A Gremlin ma-
chine can be executed over any supporting graph computing sys-
tem such as an OLTP graph database and/or an OLAP graph pro-
cessor. Gremlin, as a graph traversal language, is a functional lan-
guage implemented in the user’s native programming language and
is used to define theΨ of a Gremlin machine. This article provides
a mathematical description of Gremlin and details its automaton
and functional properties. These properties enable Gremlin to nat-
urally support imperative and declarative querying, host language
agnosticism, user-defined domain specific languages, an extensible
compiler/optimizer, single- and multi-machine executionmodels,
hybrid depth- and breadth-first evaluation, as well as the existence
of a Universal Gremlin Machine and its respective entailments.

Categories and Subject Descriptors G.2 [Discrete Mathematics]:
Graph Theory

Keywords graph traversal, finite automata, functional languages,
virtual machines

1. Introduction
A graph is a structure composed of vertices and edges. Graphs
have seen a resurgence in the database community with the growth
of graph database technology [1]. The query language of a graph
database typically promotes either agraph traversalor a graph
pattern matchperspective. In the traversal model, traversers walk
a graph according to particular user provided instructionsand the
result of the traversal is the locations of all halted traversers. In
the pattern match model, a subgraph containing variables iscre-
ated by the user and all graph elements that bind to those variables
are returned as the result set. Gremlin supports both the impera-
tive traversal-style and the declarative pattern match-style within
the same framework. Furthermore, beyond supporting both pop-
ular models of graph querying, Gremlin’s machine and language

2015 Proceedings of the ACM Database Programming LanguagesConference

structures naturally facilitate Gremlin being 1.) embedded in a host
programming language, 2.) extended by users wishing to lever-
age the terminology of their problem domain, 3.) optimized via an
extensible set of compile-time rewrite rules, 4.) executedwithin
a multi-machine compute cluster, 5.) evaluated in a depth-first,
breadth-first, or hybrid ordering, and finally, 6.) represented within
the graph itself via the theoretical existence of a Universal Gremlin
Machine.

2. Graph Traversal Machine
Gremlin, as a graph traversal machine, is composed of three com-
ponents: a graphG (data), a traversalΨ (instructions), and a set of
traversersT (read/write heads). Conceptually, a collection of tra-
versers inT move aboutG according to the instructions specified
in Ψ. The computation is complete when either 1.) there no longer
exists any traversers inT or 2.) all existing traversers no longer ref-
erence an instruction inΨ (i.e. they have halted). For the former,
the result set is the empty set. For the latter, the result setis the
multi-set union of theG locations those halted traversers reference.

2.1 The Graph

Gremlin operates over a multi-relational, attributed, digraphG =
(V,E, λ), whereV is a set of vertices,E ⊆ (V × V) is a
multi-set of directed binary edges, andλ : ((V ∪ E) × Σ∗) →
(U \ (V ∪ E)) is a partial function that maps an element/string
pair to an object in the universal setU (excluding vertices and
edges as allowed property values). Givenλ, every vertex and edge
can have an arbitrary number of key/value pairs calledproperties.
For example, vertices may have name, age, latitude properties and
edges may have weight, date, permission properties. The universal
setU contains the set of all property values. These values may be
restricted to longs (N), doubles (R), strings (Σ∗), etc., or subsets
thereof, and thus given the schema of the graph,U can be con-
strained accordingly.

2.2 The Traversal

A traversalΨ is a tree of functions calledsteps. Steps are arranged
in the following two ways:

1. Linear motif : The traversalf ◦ g ◦ h is a linear chain of three
steps where the output traversers off are the input traversers of
g. Likewise, the output ofg is the input ofh.

2. Nested motif: The traversalf(g ◦ h) ◦ k contains the nested
traversalg ◦ h which is an argument of the stepf . In this way,
f will leverageg ◦ h in its mapping of its input traversers to its
output traversers which are then provided as input tok.

A stepf ∈ Ψ defined asf : A∗ → B∗ maps a set of traversers
located at objects of typeA to a set of traversers located at objects
of typeB. The Kleene star notationA∗, when used in the context
of an interpretation function, denotes that multiple traversers may

http://arxiv.org/abs/1508.03843v1

be at the same element inA. However, what is mapped is a unique
set of traversers to a unique set of traversers. It is only themulti-set
union (⊎) of their locations inG that may contain duplicates.

The Gremlin graph traversal language defines approximately30
steps which can be understood as theinstruction setof the Gremlin
traversal machine. These steps are useful in practice, withtypically
only 10 or so of them being applied in the majority of cases. Each
of the provided steps can be understood as being a specification of
one of the 5 general types enumerated below.1

1. map : A∗ → B∗, where|map(T)| = |T |. These functions
map the traversersT at objects of typeA to a set of traversers
at objects of typeB without altering the traverser set size.

2. flatMap : A∗ → B∗, where the output traverser set may be
smaller, equal to, or larger than the input traverser set.

3. filter : A∗ → A∗, where filter(T) ⊆ T . The traversers in the
input set are either retained or removed from the output set.

4. sideEffect : A∗ →x A∗, where sideEffect(T) = T . An
identity function operates on the traversers though some data
structurex (typically inG) is mutated in some way.

5. branch : A∗ →b B∗, where an internal branch function
b : T → P(Ψ) maps a traverser to any number of the nested
traversals’ start steps.

All the above steps can be represented as a specification of
flatMap() – i.e. map one set of traversers to another set of traversers.
For instance, map() as a flatMap() simply maps each traverserin
T (at A) to a single traverser inB. For filter(), flatMap() either
includes the original input set traverser or removes it, whereA =
B. If flatMap() can mutate outside data structures, then sideEffect()
is simulated, where the input traverser setT is the output traverser
set. Finally, branch() is simulated by ensuring the internal logic
of flatMap() include rules for choosing different mappings of the
traversers inT given their state.

2.3 The Traverser

A traverser unifies the graph and the traversal via a reference to
an object in the graph and a reference to a step in the traversal.
Formally, a traversert is an element in the 6-tuple set

T ⊆
(

U ×Ψ× (P(Σ∗)× U)
∗
× N

+ × U × N
+
)

.

The first element of the tuple is the traverser’s location in the graph
G (e.g.v ∈ V , whereV ⊂ U).2 The second element is the tra-
verser’s step location in the traversalΨ. The third element is a
sequence of sets of strings and objects called alabeled path. For
example,(((a), x), ((b, c), y), (∅, z)) denotes the traverser’s path
x y z with respective step labels at each location. The
forth element is the traverser’sbulk which denotes the number of
equivalent traversers this particular traverser represents.3 The firth
element is the traverser’ssackwhich is a local variable of the tra-
verser. The sixth, and final element, is the traverser’sloop counter

1 If the underlying host language supports lambda functions (and
LambdaVerificationStrategy is disabled), then it is possible for users
to leverage the common lambda parameterization idiom of functional pro-
gramming. For instance, users can dofilter{t.loops() < 5}. How-
ever, this is strongly discouraged as the provided lambda can not be sub-
jected to Gremlin’s compiler optimizations. Instead, the pure traversal form
loops().is(lt(5)) should be used, where is() is a type of filter() step.
2 The “graph location” of a traverser is inU as opposed to onlyV ∪ E
because a traverser can move beyond vertices and edges by referencing
arbitrary objects associated with the graph such as property keys, property
values, and side-effect data structures.
3 Traverser bulk is useful as an fundamental optimization, though it is not
theoretically required.

which specifies the number of times a traverser has gone through a
loop sequence. The following functions project the aforementioned
components of a traverser to their respective values.

1. µ : T → U maps a traverser to an object inU (i.e. its location
in the graph).

2. ψ : T → Ψ maps a traverser to a step inΨ (i.e. its location in
the traversal – program counter).

3. ∆ : T → (P(Σ∗) × U)∗ maps a traverser to its labeled path
(i.e. its history in the graph).

4. β : T → N
+ maps a traverser to its bulk.

5. ς : T → U maps a traverser to its sack value.

6. ι : T → N
+ maps a traverser to its loop counter.

Visually, a traversert ∈ T is a “bundle” of local variables (meta-
data) with a projection to a location in the graphG and a projection
to a location in the traversalΨ.

G←− µ
t ∈ T

{∆, β, ς, ι}
ψ −→ Ψ

3. Graph Traversal Language
Gremlin, as a graph traversal language, is afunctional language.
The purpose of the language is to enable a human user to easily
defineΨ and thus, program a Gremlin machine. The simplicity
of Gremlin’s grammar enables it to be embedded in the native
programming language of the user.4 In this way, for a developer,
there is no discontinuity between their software code and their
graph analysis code.

In order for a language to host Gremlin, the language needs to
supportfunction compositionand function types(i.e. functions as
first-class entities or enable it via “function objects.”).With method
chaining (a type of function composition), a natural fluent syntax is
possible. For instance, the traversala◦b◦c is denoteda().b().c()
in the dot notation-syntax of modern object-oriented programming
languages. With function arguments, traversal nesting is possible.
For instance,a(b ◦ c) ◦ d is denoteda(b().c()).d().

3.1 A Simple Traversal

The most basic graph traversal is one that moves traversers through
the steps ofΨ in a sequential order (Ψ1 Ψ2 . . . Ψ|Ψ|) and
where no step maintains internal, nested traversals. The example
traversal below is a simple linear traversal that determines, in plain
language, the age of the oldest person that Marko knows (assuming,
for the sake of simplicity of discussion, that each vertex inthe
example graph has a unique name).

g.V().has("name","marko").
out("knows").values("age").max()

The first term,Vg (g.V()), is the definition of a traverser set
bijective toV , where

⊎

i µ((Vg)i) = V . The above traversal can
be written in curried functional notation as

max(valuesage(outknows(hasname=marko(Vg)))).

The starting traverser setVg is first processed by hasname=marko. A
traverser set is returned that only contains a single traverser at the

4 TinkerPop distributes a Gremlin machine implemented in Java8 and a
Gremlin language binding in both Java8 and Groovy. With the JVM be-
ing host to numerous programming languages, the wider TinkerPop com-
munity has provided Gremlin language bindings in Scala, Clojure, Ruby,
JavaScript, and more. Conceptually, TinkerPop’s Gremlin machine is a vir-
tual machine implemented in Java that can be programmed via the numer-
ous Java-based programming languages in existence.

vertex named “marko.” The step outknows then maps themarko-
vertex traverser (parent) to a traverser set (children) located at those
vertices that are outgoingknows-adjacent to themarko-vertex. The
children have a new graph location, traversal step location, and a
path that is the concatenation of their parent’s path and their current
location. An example child traverser, at this point, will bethe 6-
tuple

(y, valuesage, ((∅, x), (∅, y)), 1, ∅, 0),

whereλ(x,name) = marko andλ((x, y), label) = knows. Next,
valuesage maps to a traverser set where each child traverser is
located at the integer value of their current vertex’sage-property.
Finally, max() transforms the traverser’s atN∗ to a single traverser
at a number representing the maximum number in the previous set
(i.e. the oldestage-value).

Vg : 0→ V ∗ flatMap
hasname=marko : V ∗ → V ∗ filter

outknows : V ∗ → V ∗ flatMap
valuesage : V ∗ → N

∗ map
max : [N∗]→ N map

It is important to note that the domain of thestepn is equal to
the range ofstepn−1. Furthermore, the domain of max() is[N∗]
and the range isN . The step max() is “blocking” in that the entire
traverser set is required as input before the single traverser t is
outputted, whereµ(t) ∈ N. The notation[A∗] denotes a barrier.
Steps that reduce a traverser set to a single traverser by wayof
some binary operation are calledreducing barrier steps.

In Gremlin, a traverser set can grow and shrink over the course
of the computation. Traverser sets typically shrink due to filter()
steps removing traversers, map()/flatMap() partial functions map-
ping to undefined locations inG (e.g. Marko may not know any-
one), or reducing barrier steps going from many-to-one.5 Traverser
sets grow due to one-to-many flatMap() steps. Gremlin traversers
arefurcating automatain that if multiple options are met, then all
options are taken. For instance, if a traverser is at a singlevertex and
the current stepψ(t) maps to many adjacent vertices (e.g. outknows

and Marko knows many people), then the traverser “splits” (clones
itself) and each child is placed at each adjacent vertex. Theonly
modification to the child clones are new locations inG andΨ as
well as a new labeled path∆ which is a one-step extension of the
parent traverser’s path.

The language used in the discussion thus far states that a “set
of traversers” is being mapped between each step of the traver-
sal. However, traversers are isolated entities maintaining their own
metadata/state, where the step functions themselves have no state.
This type of traverser isolation enables a traversal’s evaluation or-
der to change at different points inΨ as sometimes it is useful to use
depth-first (one traverser at each step) and sometimes breadth-first
(sets of traversers at each step). A Gremlin machine implementa-
tion can make use of a dataflow/stream construct [9] and simulate
breadth-first evaluation at particular points in the traverser stream
via the insertion of anidentity barrier stepwith interpretation func-
tion barrier: [U∗]→ U∗.

3.2 A Branching Traversal

A branch in Gremlin is a split inΨ. Formally,

branchb(t) = b(t)(t),

whereb : T → Ψ. The branching functionb determines, given
the state oft, which internal traversal the traverser should follow.

5 As will be explain later, traverser sets also shrink when multiple traversers
arrive at the same location inG and, at which point, these traversers merge
into a single traverser with a respective “bulk” equal to thesum of the bulks
of all merged traversers. However, while the set shrinks, the same logical
number of traversers still exists.

Depending on the particular branch step, the traversertmay be sent
down a single branch (e.g. choose()), a subset of the branches (e.g.
repeat().emit()), or all branches (e.g. union()).

The choose() step is a branch step which provides the common
“if/else if/.../else” programming construct.

g.V().choose(label()).
option("person", out("created").count()).
option("software", in("created").count()).
option(none, label())

In the above traversal, if the traverser incoming to choose() is at a
person-vertex, then send the traverser down the branch that com-
putes the number of projects that that person has created. Ifthe
traverser is at asoftware-vertex, then send the traverser down the
branch that computes the number of collaborators on that software
project. Finally, if the traverser is located at neither aperson- nor
software-vertex, then send the traverser down the branch that yields
the label of the vertex, where thenone-option refers to a branch
that should be taken if no other options are valid (i.e. “else”). If
thenone-option did not exist, then choose() would act as a filter re-
moving the option-less traverser fromT . Note that option() is not a
step, but astep modulator. Step modulators are “syntactic sugars”
that manipulate the previous step in order to reduce the complexity
of the modulated step’s arguments (and respective functionover-
loadings). In this way, choose() takes traversals as arguments and
thus, maintains internal nested traversals, where the firsttraversal
(label()) plus the option keys (e.g. “person”) form the branch func-
tion. The above choose() step is represented in curried formas

chooselabel(t) =











count(outcreated(t)) : µ(label(t)) = person
count(increated(t)) : µ(label(t)) = software
label(t) : otherwise.

Note that the domain and range of chooselabel() is

chooselabel : V
∗ →

(

N
+ ∪ Σ∗)∗ .

As such, any step following choose() must be able to accept either
numbers or strings.

It is worth noting that Gremlin supports a more compact syntax
for boolean-based “if/else.” If there are only two options,“person”
andnone, then the above traversal would be defined as below.

g.V().choose(label().is("person"),
out("created").count(),
label())

3.3 A Recursive Traversal

The examples presented thus far have the traversers moving from
“left to right” through the sequence of steps inΨ. In order to
support recursion (i.e. looping), it is necessary to set thetraverser’s
ψ-program counter back to some previously seen step. An example
of such a step is the recursive function

repeatp(t) =

{

repeatp(tι+1) : p(t) = true
t0 : otherwise,

wherep : T → Bool is some traverser predicate,ι(tι+1) = ι(t)+1
(i.e. increment the loop counter), andι(t0) = 0 (i.e. reset the loop
counter).

The following traversal returns the names of the vertices 5
outgoing steps from the vertex named “marko.”

g.V().has("name","marko").
repeat(out()).times(5).
values("name")

With times() being a step modulator, the repeat() step is function-
ally defined as

repeatι<5(t) =

{

repeatι<5(out(tι+1)) : ι(t) < 5

t0 : otherwise.

Suppose it is necessary to get the names of all the vertices en-
countered along the 5 step walk emanating from the vertex named
“marko” (and not just those names 5 steps away).

g.V().has("name","marko").
repeat(out()).emit().times(5).
values("name")

If the traverser loops, it is also emitted along with its recursive
mapping. Note that emit(), like times(), is a step modulatorof
repeat(), where

repeatι<5,emit(t) =

{

(

repeatι<5,emit(out(tι+1)), t0
)

: ι(t) < 5

t0 : otherwise.

3.4 A Path Traversal

The third component of the traversert’s 6-tuple is its labeled path
∆(t) ∈ (P(Σ∗)× U)∗. Whenever a traverser is mapped to a new
location inG, this location as well as the set of labels for the
respective step inΨ are appended to the child traverser’s path. For
example, assume the following traversal.

g.V().as("a").out().as("b","c").path()

In the traversal above, the traversert will start at a particular ver-
tex in x ∈ V . That location is labeled “a” via the step modulator
as(), where∆(t) = (((a), x)). Next, the traversert will split itself
amongst all the outgoing adjacent vertices ofx, where one partic-
ular child traverser’s path would be∆(t′) = (((a), x), ((b, c), y))
assuming(x, y) ∈ E. Thus,

path(t) = t∆(t),

whereµ
(

t∆(t)

)

= ∆(t). A single halted traversert′′ from the
traversal above would have

µ(t′′) = (((a), x), ((b, c), y))

and

∆(t′′) = (((a), x), ((b, c), y), (∅, ((a), x), ((b, c), y)))).

That is, the labeled path oft′′, up to that point in the traversal, is an
element in its path.

A traverser’s path history is useful in the following enumerated
situations.

1. It is necessary to determine the (shortest)-path from vertexx to
vertexy.

2. It is necessary to go back to some previous location of the
traverser.

3. It is necessary to determine if a particular location has already
been visited.

In terms of items 1 and 3,

g.V(x).repeat(out().simplePath()).
until(is(y)).path().limit(1)

will return the shortest, simple (non-looping) path from vertexx to
vertexy, where until() is a step modulator for repeat() and the filter

simplePath(t) =

{

t :
∣

∣

∣

⋃

i<|∆(t)| µ (∆(t)i)
∣

∣

∣
= |∆(t)|

∅ : otherwise.

3.5 A Projecting Traversal

In the previous subsection, it was stated that sometimes it is nec-
essary to go back to some previous location in the traverser’s path
history. The following traversal does just that.

g.V().as("a").out("knows").as("b").
select("a","b").
by(in("knows").count()).
by(out("knows").count())

When the traversert reaches select(), there will be two vertices
labeled “a” and “b” in its path. The select() step generates two
new traverserst∆a(t) andt∆b(t), whereµ

(

t∆a(t)

)

= ∆a(t) and
µ
(

t∆b(t)

)

= ∆b(t). Traversert∆a(t) will ultimately determine
the number of incomingknows-adjacent vertices to the “a”-vertex
and traversert∆b(t) will determine the number of outgoingknows-
adjacent vertices to the “b”-vertex. The by() step modulator speci-
fies which traversal the “a” and “b” traversers should traverse. The
curried function signature is

selecta,b : V
∗ → P(Σ∗ × N

+)∗,

where an element inP(Σ∗ × N
+) is aMap<String,Long> data

structure in programming. The definition of the selecta,b function is

selecta,b(t) =

((

a, count
(

inknows
(

t∆a(t)

)))

,
(

b, count
(

outknows
(

t∆b(t)

)))

)

.

The where() step is similar to select() save that it filters a
traverser based on its labeled path. The traversal below does the
same selection as above, but only if the traverser’s “a” and “b”
vertices are not maternal siblings. Thus,

¬wherea,b(t) =

{

t : t∆b(t) /∈ inmother
(

outmother
(

t∆a(t)

))

∅ : otherwise

in the traversal

g.V().as("a").out("knows").as("b").
where(not(
as("a").out("mother").in("mother").as("b"))).

select("a","b").
by(in("knows").count()).
by(out("knows").count())

The above syntax ofas("a")...as("b") is syntactic sugar for
select("a")...where(eq("b")).

3.6 A Centrality Traversal

A graph is a complex structure that is difficult to reason about in
itsn-dimensional form. In order to extract meaningful information
from graphs, numerous statistics have been developed in thedo-
mains of graph theory and network science [2]. Every graph statis-
tic maps ann-dimensional graph to some lower dimensional space.
Typically, the reduction is either to a 0- or 1-dimensional space. For
instance, sizeV : G → N

+ is a 0-dimensional statistic that maps a
graph to the number of vertices it contains.Graph centralityis a 1-
dimensional graph statistic generally defined asG→ R

|V |, where
the function maps a graphG to a vector of centrality scores for
each vertex inV . Centrality measures identify “important,” “rep-
resentative,” “connective,” “influential,” etc. verticesin the graph.
In eigenvector centrality, centrality is formally defined as the prob-
ability that a vertex will be host to some random walker at some
random point in time. This description can be represented bythe
linear algebraic equationAv = λv, where

Ai,j =

{

1 : (i, j) ∈ E

0 : otherwise

is the adjacency matrix of the graphG andv is the eigenvector
whose components change, with each iteration, according tothe
scalarλ (the eigenvalue).6 If the graph is strongly connected and
aperiodic [6], then the larger a vertex’s value inv, the more central
it is in the graph. The equationAv = λv is expressed and solved
in Gremlin via the traversal

g.V().repeat(groupCount("m").out()).
times(30).cap("m")

The groupCount() side-effect step is defined as

groupCountm(t) =m t : m[µ(t)] = m[µ(t)] + β(t).

Every time a traverser arrives at groupCount(“m”), its vertex loca-
tion is indexed into the mapm ∈ P(V × N

+), wherem ∼ v

andm is a Map<Vertex,Long>. The keys ofm are the vertices
in V and the values are the number of times each vertex has been
encountered thus far. Thirty iterations is provided as a value that is
typically large enough to ensure convergence in natural graphs. It
is possible for repeat()’s times() to be replaced with an until() that
calculates whether the map’s values have reached a steady state dis-
tribution. This requires comparing the unit vectorv̂ = v

‖v‖
at itera-

tionnwith v̂ at iterationn+1. However, for the sake of simplicity,
this computation is left to the reader to deduce.

The step cap(“m”) is asupplying barrier stepin that is takes
takes all the incoming traversers and emits a single traverser that is
not a function of the incoming set, but a function of a side-effect
data structure. In this case, a single traversert is emitted where
µ(t) = m.

capm : [V ∗]→ P(V × N
+).

3.7 A Mutating Traversal

All of the examples presented thus far have only read from the
graph. None have written to it. Gremlin provides a collection of
graph mutation steps that can be used to add and remove vertices,
edges, and properties. A few of these are outlined below.

addOutE : V ∗ → E∗ sideEffect/map
addInE : V ∗ → E∗ sideEffect/map

addV : U∗ → V ∗ sideEffect/map
property : (V ∪E)∗ → (V ∪E)∗ sideEffect

drop : [(V ∪ E)∗]→ 0 sideEffect/map

The two traversals below mutate the graph. The first one adds
an inversecreatedBy-edge for everycreated-edge. The second re-
moves the originalcreated-edges.

g.V().as("a").out("created").
addOutE("createdBy","a")

g.V().outE("created").drop()

3.8 A Declarative Traversal

Gremlin supports graph pattern matching analogous, in manyre-
spects, to SPARQL [11]. The primary benefit of Gremlin’s pattern
matching is that it encompasses only a single step within theGrem-
lin language and thus, it is possible to move from declarative pattern
matching, to imperative traversals, and back all within thesame
traversal definition. Moreover, pattern matching is expressed as a

6 The method of multiplying the vectorv (initially being set to1|V |) against
the adjacency matrixA until λ reaches a fixed point is called thepower
iteration method. The resultantv (whenλ converges) is guaranteed to be
the primary eigenvector withλ being the largest eigenvalue.λ defines the
growth rate ofv over any subsequent iterations. In Apache TinkerPop’s
Gremlin implementation, the growth rateλ plays an important role in
understanding when the “bulk”β of a traverser will overflow its 64-bit long
representation.

traversal and thus, uses the same Gremlin traversal machinecon-
structs presented thus far.

The match() step’s argument is a set oftraversal patternsthat
may be not()’d or nested via and() and or(). When a traverser enters
match(), it will propagate through each pattern. A traverser that
continues on to the step after match() is guaranteed to have had its
labeled path values bind (via equality) to all the prefix and postfix
variables of the match() traversal patterns.

g.V().match(
as("a").out("created").as("b"),
as("b").in("created").count().is(gt(3)),
as("b").in("created").as("c"),
as("a").out("father").as("c")).

dedup("a").
select("a").by("name")

The traversal above will return the name of all vertices who created
a piece of software in collaboration with at least 4 people with the
caveat that one of those collaborators is their father.

match(t) =


























match(bindb(outcreated(t∆a(t)∧∆m1))) : ∆a(t) 6= ∅ = ∆m1(t)

match(is>3(count(increated(t∆b(t)∧∆m2)))) : ∆b(t) 6= ∅ = ∆m2(t)

match(bindc(increated(t∆b(t)∧∆m3))) : ∆b(t) 6= ∅ = ∆m3(t)

match(bindc(outfather(t∆a(t)∧∆m4))) : ∆a(t) 6= ∅ = ∆m4(t)

t : otherwise,

where

bindx(t) =











t∆x(t)=µ(t) : ∆x(t) = ∅

t : ∆x(t) = µ(t)

∅ : otherwise.

The match() step is a recursively defined branch step, where each
pattern/branch is taken once and only once. This is guaranteed by
the hidden path label “m#” which is appended to the traverser’s
labeled path upon entering a branch pattern. Moreover, the prefix
label x of a pattern must exist in the traverser’s path prior to the
traverser taking that particular branch (i.e.∆x(t) can not equal∅).
Upon completing a pattern, if the traverser already has the postfix
label in ∆(t) then that historic location must equal its current
locationµ(t) otherwise the traverser is deemed a non-match and
is filtered out. However, if the postfix label does not exist in∆(t),
then it is added to the path of the traverser and thus, that variable
is bound for all subsequent patterns. A traverser is able to exit
the match() step when every pattern has been taken. Within the
labeled path of a surviving traverser lies the match-variables and
their respective bindings –(∆a(t),∆b(t),∆c(t)).

The order in which match-patterns are executed is up to the
match() step implementation. The only caveat is that the two
pattern selection criteria are respected – 1.) the pattern has not
been taken before and 2.) the prefix variable of the pattern al-
ready exists in the labeled path of the traverser. TinkerPop’s
Gremlin implementation provides twomatch algorithmscalled
GreedyMatchAlgorithm and CountMatchAlgorithm [3]. The
former simply finds the first pattern in the user provided listthat
meets the respective constraints and executes that pattern. The lat-
ter maintains, for each pattern, a dynamicmultiplicity variable that
is equal to the number of traversers outputted by the patterndi-
vided by the number of traversers inputted to the pattern. Itthen
continually re-sorts the patterns favoring those that havethe lowest
multiplicity (i.e. it favors patterns that yield the largest set reduc-
tions).

3.9 A Domain Specific Traversal

The Gremlin traversal machine supports approximately 30 steps in
its instruction set. These steps are deemed the most useful for most
any traversal algorithm. The Gremlin traversal language is(nearly)
in one-to-one correspondence with these steps. This alignment is
due to the fact that the Gremlin language is a “graph specific
language” that forces the user to process their data from thegraph-
perspective of vertices (out(), inV()), edges (outE()), and properties
(values()).

Typically, in practice, a graph structure represents some problem-
domain that is best modeled as a graph. In these domains, the con-
cept of vertices and edges may be understood as people and social
relationships, for example. It is trivial for a user to definea do-
main specific languagethat, when compiled, generates a traversal
in terms of the∼30 Gremlin steps. For instance, given the example
graph used throughout this section, a hypothetical “socialtraversal
language” may allow the following domain specific query to be
expressed.

g.people().named("marko").
who().know(well).people().
who().created("software").
are().named()

Each one of these steps would be the composite or 1 or more
Gremlin steps.

g.people() 7→ g.V().hasLabel("person")
named("marko") 7→ has("name","marko")
who() 7→ identity()
know(well) 7→ outE("knows").

has("weight",gt(0.75)).
inV()

created("software") 7→ out("created").
hasLabel("software")

are() 7→ identity()
named() 7→ values("name")

While the user expresses queries in the language of their domain,
Gremlin ultimately evaluates those queries in terms of the underly-
ing graph structure used to represent that domain.

4. Traversal Strategies
A traverser executes the step functions defined inΨ. Sometimes a
particular step sequence inΨ can be expressed in another way that
is perhaps more efficient to execute. Gremlintraversal strategies
define translations which rewrite sections of a traversal (with typ-
ically, though not necessarily, the same semantics as the original
traversal) [16]. There are 5 traversal strategy categoriesthat form
a total order, where a category’s strategies are evaluated prior to
moving to the next category and prior to traversal execution. Fur-
thermore, within a category, strategies form a partial order where
some strategies may require the execution of another strategy be-
fore (or after) its execution.

1. Decoration: Rewrite a traversal given that certain steps serve
only as syntactic placeholders.

2. Optimization : Rewrite a traversal given that a particular step
sequence can be expressed in a more efficient form.

3. Vendor Optimization : Rewrite a traversal give that a particular
step sequence can be expressed in a more efficient form given
the underlying graph system.

4. Finalization: Make any final adjustments to the traversal given
the “final” compiled form.

5. Verification : Analyze the traversal and ensure it is valid given
some set of constraints.

The itemization below presents a subset of Gremlin’s provided
traversal strategies and demonstrates a few rewrite rule examples
for each.7 The rewrite rules are represented such that when the left-
hand pattern is matched, it is rewritten as the right-hand pattern.

• ConjunctionStrategy (Decoration): Gremlin supports prefix
and infix notation for logical connectors. When infix notation
is used, it is converted into the respective prefix-based repre-
sentation.

a.and().b 7→ and(a,b)
a.or().b 7→ or(a,b)
a.or().b.and().c 7→ or(a,and(b,c))
a.and().b.or().c 7→ or(and(a,b),c)

• IncidentToAdjacentStrategy (Optimization): If a traversal
touches the incident edges of a vertex on its way to its adja-
cent vertices, and executes no step that requires the analysis of
those incident edges, then simply jump to the adjacent vertices
without manifesting the respective incident edges.

a.outE().inV().b 7→ a.out().b
a.bothE().otherV().b 7→ a.both().b

• AdjacentToIncidentStrategy (Optimization): If a traversal
only checks for the existence of adjacent vertices, it is typi-
cally cheaper to only manifest the incident edges.8

a.in().count().b 7→ a.inE().count().b
a.where(out()).b 7→ a.where(outE()).b
a.and(in(),out()).b 7→ a.and(inE(),outE()).b

• IdentityRemovalStrategy (Optimization): If a traversal main-
tains an identity() step, remove the identity() step and fold any
as() modulators into the previous step.

a.identity().b 7→ a.b

• FilterRankingStrategy (Optimization): All filter() steps either
remove or retain traversers inT . Thus, if there is a sequence of
filter() steps, reorder them such that cheaper filters are executed
first in the hopes of yielding large set reductions prior to execut-
ing more costly filters. Note that order() is considered a “filter”
even though it only sortsT without ever removing traversers
from T .

a.and(c,d).has().b 7→ a.has().and(c,d).b
a.order().dedup().b 7→ a.dedup().order().b

• RangeByIsCountStrategy(Optimization): If a traversal only
needs to determine if a particular number of elements exist,
then instead of counting the full set, limit the count to 1 plus
the required number.

a.count().is(0) 7→ a.limit(1).count().is(0)

7 It is easy for vendors and users to register new traversal strategies with
TinkerPop’s Gremlin compiler. This is typically done by vendors as their
graph system may maintain different optimizations accessible only through
their custom interfaces. In such situations, vendors will write custom steps
and traversal strategies that replace particular Gremlin step sequences with
their vendor-specific steps.
8 This is especially true in distributed Gremlin where a vertex in a vertex
partition maintains direct references to only its properties, incident edges
and their properties. WithoutAdjacentToIncidentStrategy, the left-
handed patterns would waste network bandwidth as traversers would be
sent to adjacent vertices only to be counted/etc.

• XGraphStepStrategy(Vendor Optimization): Graph database
vendors typically maintain indices over the properties of the
vertices (and sometimes edges) of the graph. In order avoid
O(|V |) linear costs, fold all has() steps into a vendor spe-
cific V() step in order to facilitateO(log(|V |)) indexed-based
lookups.

V.has().has().b 7→ V[has,has].b

• MatchPredicateStrategy (Optimization): If match() is fol-
lowed by a where() step, fold that where() step into match()
as a new branch pattern. In this way, the where()-based pattern
is subject to the match() step’sXMatchAlgorithm runtime op-
timizer. Furthermore, if match() maintains a has()-based pattern
whose prefix variable is the input variable, then pull that pat-
tern out of match() such that it may be used by the vendor for
respective index lookups (seeXGraphStepStrategy).

a.match(c,d).where(e).b 7→ a.match(c,d,e)
a.match(has(),c,d).b 7→ a.has().match(c,d).b

• ProfileStrategy (Finalization): If the user wants to get met-
rics about a traversal’s performance, then a terminal profile()
step serves as a place holder for later inserting profile() steps
between each step in the traversal. Profiling metrics are main-
tained in a side-effect data structure.

a.b.profile() 7→ a.profile().b.profile()

• ComputerVerificationStrategy (Verification): Single-machine
Gremlin (OLTP) is more flexible in the types of traversals it can
execute. When a traversal is executed within a multi-machine
compute cluster (OLAP), certain traversal sequences are not
allowed. Over time, as advances are made to the distributed
Gremlin machine, respective verifications will be removed ac-
cordingly.

a.order.b 7→ error
a.local(out().out()).b 7→ error

5. Distributed Graph Traversals
Gremlin’sgraph computertraversal machine was designed to sup-
port the distributed execution of a Gremlin traversal via the bulk
synchronous parallel (BSP) model of distributed computing[19].
In graph-based BSP, each vertex is a logical processor that receives
messages (typically via adjacent neighbors), updates its state given
its current state and its received messages, and send messages (typi-
cally to adjacent neighbors) [10]. This process continues until there
are no more messages being sent. The result of the computation is
distributed across the state of all the vertices (e.g. ascore-property
on each vertex). In Gremlin, the vertices receive traversers as mes-
sages, execute the traverser’s traversal step identified byψ, and for
each traverser generated, sends a message to the respectivever-
tex referenced by the traverser’sµ.9 For those traversers that have
halted, the vertex saves the halted traversers in a “hidden”vertex
property value. This process continues until there are no more tra-
versers being sent around the cluster. The aggregate of the locations
of all halted traversers across all vertices in the graph is the result
of the computation.

When a graph is partitioned across a cluster, traversers migrate
between the machines as dictated by theirµ(t).10 For instance,

9 If the traverser references an edge, then the message is sentto the vertex
maintaining that edge. If the traverser references some other object inU ,
then the traverser remains at the current vertex location.
10 It is not required that the Gremlin graph computer machine operate over
multiple physical machines. The only requirement is that the underlying
graph system provide a logical partition of the vertices inV and that each

V1 ⊎ V2 ⊎ V3 = V denote three vertex partitions ofV , where
each partition is composed of a unique set of vertices ofV and
their respective incident edges (V1 ∩ V2 ∩V3 = ∅). When traverser
t is located atµ(t) ∈ V1, the traverser will exist at machine
1. Suppose the stepψ(t) is applied and the following traverser’s
are generated(t′, t′′, t′′′) where,µ(t′) ∈ V2, µ(t′′) ∈ V3, and
µ(t′′′) ∈ V1. Traverserst′ andt′′ will be serialized and sent over
the network to machines 2 and 3, respectively, for further execution.
However, traversert′′′ will remain at machine 1 to execute its
referenced stepψ(t′′′). In this model of distributed graph traversal,
it is advantageous to create a partition ofV that reduces costly
inter-machine communication.

The Gremlin graph computer machine executes in a breadth-
first manner as each traverser at every vertex is operated on in par-
allel. As graphs become large, the number of traversers can eas-
ily grow exponentially, especially in repeated one-to-many map-
pings. For example, in a 20x20 lattice with vertices having only
one “right” and one “down” edge, the traversal

g.V(topLeft).repeat(out()).times(40)

will ultimately yield∼138 billion traversers at the lattice’s “bottom
right” vertex. The general equation for the number of traversers for
anynxn lattice is

(

2n
n

)

= (2n)!

(n!)2
. While the number of traversers

can grow exponentially, the number of traverser locations is always
bounded by the size ofU , where for this particular lattice traversal,
the upper bound is|V | = 400. Gremlinbulking takes advantage
of this traverser-to-location relation by projecting the (potentially
exponentially growing) traverser set to a traverser set constrained
to an upper limit|U |. As a result of thislossless compression, in the
20x20 lattice example, the resultant traverser set contains only one
traversert whose bulk isβ(t) = 137, 846, 528, 820. Traversers in
T are “bulked” according to their respective equivalence class

[t] = {t′ ∈ T | µ(t) = µ(t′) ∧
ψ(t) = ψ(t′) ∧
∆(t) = ∆(t′) ∧
ς(t) = ς(t′) ∧
ι(t) = ι(t′) }.

In other words, all components of the traverser’s 6-tuple must
be equal amongst all traversers in[t] except for their respective
bulk.11 The traversers in[t] are reduced to a single traversert′′,
whereβ(t′′) = Σiβ ([t]i) and|[t′′]| = 1. Instead of enumerating
each traverser, each traverser is counted (with only one traverser
existing in T for each equivalence class). Bulking ensures that
breadth-first Gremlin on large graphs (OLAP) does not require an
exponential amount of memory. Furthermore, this optimization is
leveraged in depth-first Gremlin (OLTP) via the barrier() step (and
LazyBarrierStrategy), where

barrier: [U∗]→ U∗

and

barrier(T) =
⋃

∀[t]∈T

tβ(t)=∑
i
β([t]i).

vertex in each partition has direct (non-remote) references to its properties,
incident edges, and incident edge properties.
11Many traversals do not require the labeled path (or a full labeled path) of a
traverser and as such, in practice, when the labeled path is not required, then
∆(t) = ∅. This helps to ensure a smaller number of equivalence classes
in T and thus, a greater likelihood of bulking. Note that when labeled
paths are considered, typically, the number of equivalenceclasses grows
proportionate to the number of uniqueΨ paths inG which tends to grow
exponentially in broad, non-filtering traversals.

6. Minimal Gremlin Traversal Machines
Gremlin, as a graph traversal machine, is an automaton. Automata
are studied in computer science to understand the minimal struc-
tural and behavioral requirements necessary for some “abstract ma-
chine” to perform a particular type of computation if it wereto be
physically built or modeled in another machine powerful enough to
simulate its behavior [8]. In automata theory, computations are rep-
resented as problems in language transduction. Every language is
composed of an alphabet of characters inΣ. Strings in the language
are inΣ∗. If an input string is “1 + 2” and an automaton produces
“3,” then the automaton has the requisite computing power toper-
form addition (assuming it generalizes to any “x+ y”).

As it stands, theTuring machineis the minimal abstract machine
required for general-purpose computing. A Turning machinecan
do any known “mechanical” (algorithmic) computation. Restricted
forms of a Turning machine are able to solve simpler problems. For
instance, a finite-state automaton can be programmed to process
regular languages and answer regular expressions. For example, the
finite-state automaton programmed asa∗b mapsb, ab, aab, aaab,
etc. totrue.

The types of languages that particular minimal Gremlin ma-
chines can process are provided in the table below, where each
minimal Gremlin machine is a reduction of the elements in thetra-
verser’s 6-tuple structure and/or a reduction in the set of possible
steps that can be used to programΨ. For Gremlin to simulate a Tur-
ing machine (as well as any less powerful automata), its instruction
set must at minimum support values(), property(), sack(), choose(),
repeat(), in(), and out().

Automaton Minimal Gremlin Machine Language
FiniteState (Uµ ×Ψ \ property∪ in× Uς) Regular
Pushdown (Uµ ×Ψ \ in× Uς) ContextFree
Turing (Uµ ×Ψ× Uς) Recursive

6.1 Turing Completeness

This subsection defines a surjective function whose image ofthe
full Gremlin traversal machine is isomorphic to a single-headed
Turing machine. The aforementioned components of Gremlin are
mapped to the components of a 5-tuple Turing machine

M = (Q,F,Γ,Σ, δ),

whereQ is the set of machine states,F ⊆ Q is the set of legal
halt states,Γ is the readable/writable alphabet,Σ ⊆ Γ is the
initial input on an infinite one-dimensional tape of cells, and δ :
((Q \ F)× Γ) → (Q× Γ× {L,R}) is the transition function
which updates the machine’s state, determines which symbolto
write to the current tape cell, and whether it should then go “left”
or “right” on the tape.

. . . [][][γ][][][] . . .
↑
M [δ]

A machine is deemed Turing Complete if it can simulate the afore-
mentioned single-headed Turing machine. If so, that machine can
be programmed to execute any known algorithm [18].

Theorem. The Gremlin graph traversal machine is Turing Com-
plete.

Proof. For the Gremlin traversal machine, the tape is the (infinite)
graphG, where each vertexv ∈ V has one incoming neighbor, one
outgoing neighbor, asymbol-property value inΓ and initially, the
symbolsΣ are thesymbol-property values of a consecutive chain
of vertices. In other words,G is a line graph with each vertex
representing a cell in the Turing tape with respective inputsymbols.

The Turing machine state is the traverser’s sackς(t) ∈ Q. Assume
the existence of only the following Gremlin steps:

valuessymbol : V → Γ map read tape
propertysymbol∈Γ : V → V sideEffect write tape

sack : V → Q map read state
sackq∈Q : V → V sideEffect write state

choose : V → V branch if/else
repeat : V → V branch loop

in : V → V map move left
out : V → V map move right.

The δ function of the Turing machine is the composition of the
steps above to createΨ. Note that the steps above map to traverser
sets of size 1 as no step is a true flatMap() nor filter(). Given that
there is only one “left” and one “right” adjacent neighbor toa vertex
in the line graph, the above steps will never increase (nor decrease)
the size of the traverser set. In this way, any single-headedTuring
machine can be simulated.

As an example, a 3-state “busy beaver” Turing machine is de-
fined, whereΓ = {0, 1}, Q = {A,B,C,HALT}, and δ is the
Gremlin traversal below.

g.V(1).
sack("A").
repeat(choose(values("symbol")).
option("0", choose(sack()).
option("A",
property("symbol","1").out().sack("B")).

option("B",
property("symbol","1").in().sack("A")).

option("C",
property("symbol","1").in().sack("B"))).

option("1", choose(sack()).
option("A",
property("symbol","1").in().sack("C")).

option("B",
property("symbol","1").out().sack("B")).

option("C",
property("symbol","1").out().sack("HALT")))).

until(sack().is("HALT"))

6.2 A Universal Gremlin Machine

A Universal Gremlin Machine (UGM) is a Gremlin machine that
can simulate another Gremlin machine within itsG, Ψ and T
constructs [14, 15]. The encoding to follow will represent both
Ψ and T in G [12, 17]. Any step inΨ can be represented as
a vertexv ∈ V , whereλ(v, label) = step andλ(v, op) is the
operation of that step (e.g. out). Ifu ∈ V is another step in
Ψ that follows v then there exists an edge(v, u) ∈ E, where
λ((v, u), label) = nextStep.12 A traverser inT can be represented
by a vertext ∈ V where,λ(t, label) = traverser and each element
of the traverser’s 6-tuple is a subgraph inG.

1. µ(t) is the edge(t, x) ∈ E, whereλ((t, x), label) = mu.

2. ψ(t) is the edge(t, y) ∈ E, whereλ((t, y), label) = psi and
λ(y, label) = step.

3. ∆(t) is a collection of edges to vertices that join step labels (as
vertex properties) with graph locations inG.

4. β(t) is the traverser vertex’s bulk propertyλ(t,bulk) = β(t).

5. ς(t) is the traverser vertex’s sack propertyλ(t, sack) = ς(t).

12Further complications exist for nested traversals. However, for the sake
of brevity, the general representation of such traversals are left to the reader
to contemplate.

6. ι(t) is the traverser vertex’s loop counter propertyλ(t, loops) =
ι(t).

The aforementioned mapping represents bothΨ and T as sub-
graphs ofG such that, in total,G contains the complete represen-
tation of the structure (graph) and the process (traversal and tra-
versers) of the computation. However, representation is not execu-
tion. In order for this graph structure to evolve (and thus, compute),
there must exist a Universal Gremlin Machine traverser and respec-
tive traversal that moves betweenG \ (Ψ ∪ T) and the traversal
Ψ ⊂ G updating the respective edges and properties of the tra-
versersT ⊂ G. TheG-encoded traversal and traversers form a
virtual machinein the Universal Gremlin Machine. A snippet of
theΨUGM is presented below where all supported steps would need
to be represented in anoption(...).

g.V().hasLabel("traverser").as("t").
repeat(
choose(out("psi").values("op")).
option("out",
outE("mu").as("drop").inV().out().
addInE("mu","t"))
option("in",
outE("mu").as("drop").inV().in().
addInE("mu","t"))
option(...)
option(...)
sideEffect(select("drop").drop()).
select("t").
outE("psi").as("drop").inV().
out("nextStep").addInE("psi","t").
sideEffect(select("drop").drop()).
select("t")).
until(out("psi").count().is(0))

TheΨUGM traversal loops over its repeat() traversal until theG-
encoded traverser halts by no longer referencing a step vertex. The
result of the computation is the multi-set union of the symbols on
the “tape”-subgraphG \ (Ψ ∪ T). Formally,

result=
|V |
⊎

i

{

λ (Vi, symbol) : λ (Vi, label) /∈ {traverser, step}
∅ : otherwise.

In order to provide a Universal Gremlin Machine that can oper-
ate onG-encoded Gremlin machines that maintain the same level
of expressivity as the Gremlin traversal machine discussedin this
article, it would be necessary to extend the aboveΨUGM traversal to
account for the growing and shrinking ofG-encoded traverser sets
as well as all the steps of Gremlin’s instruction set.

6.3 Parallel Universal andG-Encoded Machines

It has been assumed, up to this point, that the traversers inT all
reference steps of the sameΨ. However, nothing prevents multi-
ple traverser sets to exist, where each set operates under a different
traversal. In fact, regardless ofG-encoded machines, this is neces-
sary for allowing parallel, concurrent traversals/queries ofG. With
respect toG-encoded machines, the Universal Gremlin Machine
need not concern itself with which traverser of which traversal it is
executing. In fact, the Universal Gremlin Machine simply needs to
find any traverser that has yet to halt and execute its next step. The
Universal Gremlin Machine acts as athreadevolving the state of
different traversals/programs. However, in order to get a well de-
fined result set for each traversal, aΨ-unique identifier would need
to be appended to each traverser so that the result of some traversal

Ψ123 can be unambiguously gathered via

resultΨ123 =

|V |
⊎

i



















µ(Vi) : λ (Vi, label) = traverser∧
λ (Vi, psiId) = 123 ∧

λ (Vi, psi) = ∅
∅ : otherwise.

Finally, nothing prevents multiple Universal Gremlin Machines op-
erating in parallel againstG locating active traversers and execut-
ing a step until no more traversers exist or all traversers have halted.
This is, in fact, analogous to a multi-threaded system.

6.4 Traversing a Gremlin Traversal Machine

When the graphG, the traversalΨ, and the traverser setT are all
encoded inG, then all the components of a Gremlin traversal ma-
chine exist in the same address space – namelyG. A consequence
of this co-location is that a traverser can, in principle, traverser its
own structure. Similarly, a traverser can traverse its traversal. When
a machine has direct reference to its representation, a machine can
not only analyze itself viareflection, but it can also rewrite itself.
The ramifications of this consequence, with respects to applied
graph computing, are left to future ruminations.

6.5 A Primordial Graph Traversal Machine

This section describes, at a high-level, a vision of graph comput-
ing that is, in many ways, analogous to the token rewrite model
of the lambda calculus [4]. A lossless, injective function takes a
multi-relational, attributed digraph (MADG) to a multi-relational,
unattributed digraph (MDG), where edges are reified structures and
all properties are “property key”-labeled edges incident to “prop-
erty value” vertices [7]. Next, there exists an injective function
that maps a multi-relational digraph to an unlabeled digraph (DG),
where labels are encoded as “binary vertex chains” [13]. Finally,
another injective function has been defined that maps a digraph to
an undirected graph (UG), where edge directions are represented
as topological features of the undirected form [13].

MADG 7→ MDG 7→ DG 7→ UG

Given the existence of this mapping, the complete state of com-
puting (i.e.G, Ψ, andT) can be represented by a single undi-
rected graph whose structure is solely the composition of “dots
and lines” in somen-dimensional space. In this primitive, verbose
graph, there are no labels, strings, numbers, etc., simply dots con-
nected to each other by lines. Computing occurs when subgraphs
of a particular shape (e.g. a traverser at a location in the graph)
morph to form new subgraphs of a particular shape (e.g. new tra-
versers with new graph locations). Computing, in this manner, can
be conceptualized as a chemical reaction where “molecular struc-
tures” (undirected subgraphs) interact with adjacent structures to
yield new structures that may elicit yet more reactions [5].In this
primordial world, the computation is complete when vertices and
edges are no longer being created nor destroyed. When the undi-
rected graph reaches an equilibrium with its “laws of physics,” the
problem is solved – for it has reached a stable state.

7. Conclusion
Gremlin is a graph traversal machine and language. The Gremlin
machine specification is simple to describe and ultimately imple-
ment. The complexity of the computations that Gremlin enables is
not necessarily due to its constructs, but due to the data sets being
processed. Graphs are multi-dimensional structures able to model a
heterogenous set of “things” related to each other in a heterogenous
set of ways – all within a single, connected data structure. When a
Gremlin traversal is evaluated against a graph, billions upon bil-
lions of traversers can be generated on even small graphs dueto the

exponential growth of the number of paths that exist with each step
the traversers take. With so many forks in the road, traversers con-
tinually split themselves in order to explore each option that meets
the constraints of the traversal they obey. When these traversers ul-
timately halt, they provide an answer to the question specified by
their traversal, which was programmed by a user via the Gremlin
traversal language.

Acknowledgments
The Apache TinkerPop project (http://tinkerpop.com) was
started in November 2009 and is currently in its third generation
of development with TinkerPop3 having been released in Julyof
2015. Many individuals have contributed to the project and wider
ecosystem over the years and their contributions, both theoretical
and applied, have been invaluable to the generation of the ideas
presented in this article.

References
[1] R. Angles and C. Gutierrez. Survey of graph database models. ACM

Computer Surveys, 40:1–39, February 2008. ISSN 0360-0300. .

[2] U. Brandes and T. Erlebach, editors.Network Analysis: Methodolgical
Foundations. Springer, Berling, DE, 2005.

[3] M. Bröcheler, A. Pugliese, and V. S. Subrahmanian. A budget-
based algorithm for efficient subgraph matching on huge net-
works. In Workshops Proceedings of the 27th International Con-
ference on Data Engineering, pages 94–99, 2011. . URL
http://dx.doi.org/10.1109/ICDEW.2011.5767618 .

[4] A. Church. An unsolvable problem of elementary number theory.
American Journal of Mathematics, 58(2):345–363, April 1936.

[5] P. Dittrich and P. di Fenizio. Chemical organisation theory. Bulletin
of Mathematical Biology, 69(4):1199–1231, 2007. ISSN 0092-8240.
. URL http://dx.doi.org/10.1007/s11538-006-9130-8 .

[6] O. Häggström.Finite Markov Chains and Algorithmic Applications.
Cambridge University Press, 2002.

[7] O. Hartig. Reconciliation of RDF* and property graphs.
Technical report, University of Waterloo, 2014. URL
http://arxiv.org/abs/1409.3288 .

[8] J. Hopcroft and J. Ullman.Introduction to Automata Theory, Lan-
guages and Computation. Addison-Wesley, 1979.

[9] E. Lee and T. Parks. Dataflow process networks.Proceedings of the
IEEE, 83(5):773–801, May 1995. ISSN 0018-9219. .

[10] R. R. McCune, T. Weninger, and G. Madey. Thinking like a vertex: a
survey of vertex-centric frameworks for large-scale distributed graph
processing.ACM Computing Surveys, 2015.

[11] E. Prud’hommeaux and A. Seaborne. SPARQL query language for
RDF. Technical report, World Wide Web Consortium, October 2004.
URL http://www.w3.org/TR/rdf-sparql-query/ .

[12] M. A. Rodriguez. Grammar-based random walkers in semantic net-
works. Knowledge-Based Systems, 21(7):727–739, 2008. . URL
http://arxiv.org/abs/0803.4355 .

[13] M. A. Rodriguez. Mapping semantic networks to undi-
rected networks. International Journal of Applied Mathemat-
ics and Computer Science, 5(1):39–42, February 2008. URL
http://arxiv.org/abs/0804.0277 .

[14] M. A. Rodriguez. Emergent Web Intelligence: Advanced Seman-
tic Technologies, chapter General-Purpose Computing on a Semantic
Network Substrate, pages 57–104. Advanced Information andKnowl-
edge Processing. Springer-Verlag, June 2010. ISBN 78-1-84996-076-
2. URL http://arxiv.org/abs/0704.3395 .

[15] M. A. Rodriguez. The RDF virtual machine. Knowledge-
Based Systems, 24(6):890–903, August 2011. URL
http://arxiv.org/abs/0802.3492 .

[16] M. A. Rodriguez and J. Shinavier. Exposing multi-
relational networks to single-relational network analysis algo-
rithms. Journal of Informetrics, 4(1):29–41, 2009. . URL
http://arxiv.org/abs/0806.2274 .

[17] J. Shinavier. Functional programs as Linked Data. In3rd Workshop
on Scripting for the Semantic Web, Innsbruck, Austria, 2007.

[18] A. M. Turing. On computable numbers, with an application to the
entscheidungsproblem.Proceedings of the London Mathematical So-
ciety, 42(2):230–265, 1937.

[19] L. G. Valiant. A bridging model for parallel computation. Communi-
cations of the ACM, 33(8):103–111, August 1990.

http://dx.doi.org/10.1109/ICDEW.2011.5767618
http://dx.doi.org/10.1007/s11538-006-9130-8
http://arxiv.org/abs/1409.3288
http://www.w3.org/TR/rdf-sparql-query/
http://arxiv.org/abs/0803.4355
http://arxiv.org/abs/0804.0277
http://arxiv.org/abs/0704.3395
http://arxiv.org/abs/0802.3492
http://arxiv.org/abs/0806.2274

	1 Introduction
	2 Graph Traversal Machine
	2.1 The Graph
	2.2 The Traversal
	2.3 The Traverser

	3 Graph Traversal Language
	3.1 A Simple Traversal
	3.2 A Branching Traversal
	3.3 A Recursive Traversal
	3.4 A Path Traversal
	3.5 A Projecting Traversal
	3.6 A Centrality Traversal
	3.7 A Mutating Traversal
	3.8 A Declarative Traversal
	3.9 A Domain Specific Traversal

	4 Traversal Strategies
	5 Distributed Graph Traversals
	6 Minimal Gremlin Traversal Machines
	6.1 Turing Completeness
	6.2 A Universal Gremlin Machine
	6.3 Parallel Universal and G-Encoded Machines
	6.4 Traversing a Gremlin Traversal Machine
	6.5 A Primordial Graph Traversal Machine

	7 Conclusion

